西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (4): 74-79.doi: 10.19665/j.issn1001-2400.2019.04.011

• • 上一篇    下一篇

数据驱动的GMC稀疏增强诊断方法

陈保家1,贺王鹏2(),胡洁2,王赓2,郭宝龙2   

  1. 1.三峡大学 水电机械设备设计与维护湖北省重点实验室,湖北 宜昌 443002
    2.西安电子科技大学 空间科学与技术学院,陕西 西安 710071
  • 收稿日期:2019-03-30 出版日期:2019-08-20 发布日期:2019-08-15
  • 通讯作者: 贺王鹏
  • 作者简介:陈保家(1977-),男,教授,E-mail: cbjia@163.com.
  • 基金资助:
    国家自然科学基金(51805398);陕西省自然科学基础研究计划(2018JQ5106);水电机械设备设计与维护湖北省重点实验室(三峡大学开放基金)(2018KJX02);水电机械设备设计与维护湖北省重点实验室(三峡大学开放基金)(2018KJX03);水电机械设备设计与维护湖北省重点实验室(三峡大学开放基金)(2018KJX09)

Method for diagnosis of data-driven GMC sparse enhancement

CHEN Baojia1,HE Wangpeng2(),HU Jie2,WANG Geng2,GUO Baolong2   

  1. 1.Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance,China Three Gorges University, Yichang 443002, China
    2.School of Aerospace Science & Technology, Xidian Univ., Xi’an 710071, China
  • Received:2019-03-30 Online:2019-08-20 Published:2019-08-15
  • Contact: Wangpeng HE

摘要:

在机械故障诊断中,针对传统方法提取微弱故障特征时易受强背景噪声干扰而精度低的问题,提出了一种基于数据驱动的广义最小最大凹惩罚函数增强的稀疏特征提取方法。该方法利用非凸的最小最大凹惩罚函数建立无约束优化问题目标函数来提高故障特征的提取精度。该惩罚函数非凸可加强特征的稀疏性,并且证明了保持目标函数整体呈现严格凸性所需要满足的约束条件。将近端算法用于所构造的无约束优化问题的求解。此外,研究了数据驱动的正则化参数设置准则,保证所提出的稀疏特征提取方法具有参数自适应性。在仿真信号和实际故障实验中验证了所提出的自适应稀疏增强的特征提取方法,结果表明所提出的方法可以精准地提取出故障特征且效果更稀疏。

关键词: 机械故障诊断, 凹惩罚函数, 稀疏增强, 参数自适应

Abstract:

In mechanical fault diagnosis, to address the problem that the weak fault features extracted by traditional methods are easily disturbed by strong background noise and have a low accuracy, a data-driven sparse features extraction method using the generalized minimax-concave penalty is developed. This method constructs an effective sparse optimization objective function for mechanical fault diagnosis in order to improve the accuracy of fault feature extraction. It is also proved that the non-convex controllable parameters can guarantee the overall convexity of the objective function under certain constraints. The proximal algorithm is used to solve the unconstrained optimization problem. In addition, the data-driven regularization parameter setting criteria are studied to ensure that the proposed sparse feature extraction method has parameter adaptability. Finally, simulation results and practical fault experiment verify the effectiveness of the proposed method in the machinery fault diagnosis.

Key words: machinery fault diagnosis, concave penalty, sparsity enhancement, parametric adaptation

中图分类号: 

  • TH17