西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (4): 107-114.doi: 10.19665/j.issn1001-2400.2019.04.015

• • 上一篇    下一篇

一种红外热图像目标区域分割的深度学习算法

朱莉,赵俊,傅应锴,张晶,沈惠,张守峰   

  1. 南昌大学 信息工程学院,江西 南昌 330031
  • 收稿日期:2019-01-16 出版日期:2019-08-20 发布日期:2019-08-15
  • 作者简介:朱 莉(1982—),女,副教授,E-mail: lizhu@ncu.edu.cn.
  • 基金资助:
    国家自然科学基金(61463035);中国博士后科学基金(2016M592117);江西省杰出青年基金(2018ACB21038);微软Azure研究基金(2017);博士后研究人员日常经费补助(2017RC01);江西省博士后科研择优项目(2016KY01)

Deep learning algorithm for the segmentation of the interested region of an infrared thermal image

ZHU Li,ZHAO Jun,FU Yingkai,ZHANG Jing,SHEN Hui,ZHANG Shoufeng   

  1. School of Information Engineering, Nanchang Univ., Nanchang 330031, China
  • Received:2019-01-16 Online:2019-08-20 Published:2019-08-15

摘要:

为了解决复杂背景下红外热图像目标区域分割困难的问题,提出了一种利用全卷积网络和稠密条件随机场的深度学习分割算法。首先,利用全卷积网络进行像素级别特征提取,获得粗分割结果;然后,使用稠密条件随机场对粗分割结果进行上下文信息优化的精分割,最终实现目标区域的分割。将该算法应用于实际采集的太阳能板红外热图像数据集,五折交叉验证结果表明,该算法平均查准率为89.96%,平均查全率为94.55%,平均F1指数为0.911 8,平均J指数为0.868 7。同时,最高查准率为93.35%,最高查全率为97.59%,最高F1指数为0.956 2,最高J指数为0.912 5,均高于现有的主要算法。该算法耗时短且不需过多的人工干预,能实现复杂背景下红外热图像目标区域的有效分割。

关键词: 红外热图像, 分割, 全卷积网络, 稠密条件随机场

Abstract:

To tackle difficulties of the segmentation of the interested region in complex background, a deep-learning segmentation algorithm based on the fully convolutional network and the dense conditional random field is proposed. First, the fully convolutional network is leveraged for pixel-level feature extraction to obtain the coarse segmentation result. Then, the dense conditional random field which is used to optimize the context information is performed for detailed segmentation. Five-fold cross-validation experiments are carried out on an actually acquired infrared thermal image of the solar panel. Experimental results show that the proposed algorithm has an average precision rate of 89.96%, an average recall rate of 94.55%, an average F1 index of 0.9118 and an average J index of 0.8687. At the same time, the algorithm achieves the best maximum precision rate of 93.35%, a maximum recall rate of 97.59%, a maximum F1 index of 0.9562 and a maximum J index of 0.9125 compared with those by main existing algorithms. Moreover, this method takes less time and requires less manual interference. In conclusion, the proposed algorithm is capable of the segmentation of the interested region in the infrared thermal image effectively in the complex background.

Key words: infrared thermal image, segmentation, fully convolutional network, dense conditional random field

中图分类号: 

  • TP391