[1] |
胡长胜, 詹曙, 吴从中 . 基于深度特征学习的图像超分辨率重建[J]. 自动化学报, 2017,43(5):814-821.
|
|
HU Changsheng, ZHAN Shu, WU Congzhong . Image Super-resolution Based on Deep Learning Features[J]. Acta Automatica Sinica, 2017,43(5):814-821.
|
[2] |
李欣, 韦宏卫, 张洪群 . 结合深度学习的单幅遥感图像超分辨率重建[J]. 中国图象图形学报, 2018,23(2):209-218.
|
|
LI Xin, WEI Hongwei, ZHANG Hongqun . Super-resolution Reconstruction of Single Remote Sensing Image Combined with Deep Learning[J]. Journal of Image and Graphics, 2018,23(2):209-218.
|
[3] |
REN H Y, EI-KHAMY M, LEE J . CT-SRCNN: Cascade Trained and Trimmed Deep Convolutional Neural Networks for Image Super Resolution[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1423-1431.
|
[4] |
ZOU W W W, YUEN P C . Very Low Resolution Face Recognition Problem[J]. IEEE Transactions on Image Processing, 2012,21(1):327-340.
|
[5] |
KARRAS T, AILA T, LAINE S , et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation[CA/OL]. [2018-12-20]..
|
[6] |
HARRIS J L . Diffraction and Resolving Power[J]. Journal of the Optical Society of America, 1964,54(7):931-936.
|
[7] |
ZHU S, ZENG B, LIU G , et al. Image Interpolation Based on Non-local Geometric Similarities[C]// Proceedings of the 2015 IEEE International Conference on Multimedia and Expo. Washington: IEEE Computer Society, 2015: 7177417.
|
[8] |
ZHANG K, GAO X, TAO D , et al. Single Image Super-resolution with Non-local Means and Steering Kernel Regression[J]. IEEE Transactions on Image Processing, 2012,21(11):4544-4556.
|
[9] |
DONG C, LOY C C, HE K , et al. Image Super-resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(2):295-307.
|
[10] |
王世平, 毕笃彦, 刘坤 , 等. 一种多映射卷积神经网络的超分辨率重建算法[J]. 西安电子科技大学学报, 2018,45(4):155-160.
|
|
WANG Shiping, BI Duyan, LIU Kun , et al. Multi-mapping Convolution Neural Network for the Image Super-resolution Algorithm[J]. Journal of Xidian University, 2018,45(4):155-160.
|
[11] |
YANG J C, WRIGHT J, HUANG T S , et al. Image Super-resolution as Sparse Representation of Raw Image Patches[C]// Proceedings of the 2008 26th IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2008: 4587647.
|
[12] |
YANG J C, WRIGHT J, HUANG T S , et al. Image Super-resolution via Sparse Representation[J]. IEEE Transactions on Image Processing, 2010,19(11):2861-2873.
|
[13] |
TIMOFTE R, DE V, GOOL L V . Anchored Neighborhood Regression for Fast Example-based Super-resolution[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 1920-1927.
|
[14] |
TIMOFTE R, DE S V, VAN G L . A+: Adjusted Anchored Neighborhood Regression for Fast Super-resolution[C]// Lecture Notes in Computer Science: 9006. Heidelberg: Springer Verlag, 2015: 111-126.
|
[15] |
ZHANG H, PATEL V M . Densely Connected Pyramid Dehazing Network[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 3194-3203.
|
[16] |
ZHANG H, PATEL V M . Density-aware Single Image De-raining Using a Multi-stream Dense Network[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 695-704.
|
[17] |
张金刚, 方圆, 袁豪 , 等. 一种识别表情序列的卷积神经网络[J]. 西安电子科技大学学报, 2018,45(1):150-155.
|
|
ZHANG Jingang, FANG Yuan, YUAN Hao , et al. Multiple Convolutional Neural Networks for Facial Expression Sequence Recognition[J]. Journal of Xidian University, 2018,45(1):150-155.
|
[18] |
许强, 李伟, 占荣辉 , 等. 一种改进的卷积神经网络SAR目标识别算法[J]. 西安电子科技大学学报, 2018,45(5):177-183.
|
|
XU Qiang, LI Wei, ZHAN Ronghui , et al. Improved Algorithm for SAR Target Recognition Based on the Convolutional Neural Network[J]. Journal of Xidian University, 2018,45(5):177-183.
|
[19] |
KIM J, LEE J K, LEE K M . Accurate Image Super-resolution Using Very Deep Convolutional Networks[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1646-1654.
|
[20] |
KIM J, LEE J K, LEE K M . Deeply-recursive Convolutional Network for Image Super-resolution[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1637-1645.
|
[21] |
LAI W S, HUANG J B, AHUJA N , et al. Deep Laplacian Pyramid Networks for Fast and Accurate Super-resolution[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5835-5843.
|
[22] |
TAI Y, YANG J, LIU X . Image Super-resolution via Deep Recursive Residual Network[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2790-2798.
|
[23] |
MAO X J, SHEN C H, YANG Y B . Image Restoration Using Very Deep Convolutional Encoder-decoder Networks with Symmetric Skip Connections[C]// Advances in Neural Information Processing Systems 29 - Proceedings of the 2016 Conference. Vancouver: Neural Information Processing Systems Foundation, 2016: 2810-2818.
|
[24] |
HE K, ZHANG X, REN S , et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
|
[25] |
陈建廷, 向阳 . 深度神经网络训练中梯度不稳定现象研究综述[J]. 软件学报, 2018,29(7):2071-2091.
|
|
CHEN Jianting, XIANG Yang . Survey of Unstable Gradients in Deep Neural Network Training[J]. Journal of Software, 2018,29(7):2071-2091.
|
[26] |
TAI Y, YANG J, LIU X . Image Super-resolution via Deep Recursive Residual Network[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2790-2798.
|
[27] |
LIM B, SON S, KIM H , et al. Enhanced Deep Residual Networks for Single Image Super-resolution[C]// Proceedings of the 2017 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Washington: IEEE Computer Society, 2017: 1132-1140.
|
[28] |
AHN N, KANG B, SOHN K A. Fast, Accurate , Lightweight Super-resolution with Cascading Residual Network[C]// Lecture Notes in Computer Science: 11214. Heidelberg: Springer Verlag, 2018: 256-272.
|
[29] |
ZHANG Y, LI K P, LI K , et al. Image Super-resolution Using Very Deep Residual Channel Attention Networks[C]// Lecture Notes in Computer Science: 11211. Heidelberg: Springer Verlag, 2018: 294-310.
|
[30] |
LI J C, FANG F M, MEI K F , et al. Multi-scale Residual Network for Image Super-resolution[C]// Lecture Notes in Computer Science: 11212. Heidelberg: Springer Verlag, 2018: 527-542.
|
[31] |
孙跃文, 李立涛, 丛鹏 , 等. 基于深度学习的辐射图像超分辨率重建方法[J]. 原子能科学技术, 2017,51(5):890-895.
|
|
SUN Yuewen, LI Litao, CONG Peng , et al. Super-resolution Method for Radiation Image Based on Deep Learning[J]. Atomic Energy Science and Technology, 2017,51(5):890-895.
|
[32] |
MARTIN D, FOWLKES C, TAL D , et al. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[C]// Proceedings of the 2001 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2001: 416-423.
|
[33] |
JIA Y, SHELHAMER E, DONAHUE J , et al. Caffe: Convolutional Architecture for Fast Feature Embedding[C]// Proceedings of the 2014 ACM Conference on Multimedia. New York: ACM, 2014: 675-678.
|
[34] |
HUANG J B, SINGH A, AHUJA N . Single Image Super-resolution from Transformed Self-exemplars[C]// Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 5197-5206.
|
[35] |
李浪宇, 苏卓, 石晓红 , 等. 图像超分辨率重建中的细节互补卷积模型[J]. 中国图象图形学报, 2018,23(4):572-582.
|
|
LI Langyu, SU Zhuo, SHI Xiaohong , et al. Mutual-detail Convolution Model for Image Super-resolution Reconstruction[J]. Journal of Image and Graphics, 2018,23(4):572-582.
|
[36] |
HE K, ZHANG X, REN S , et al. Delving Deep into Rectifiers: Surpassing Human-level Performance on Imagenet Classification[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1026-1034.
|