西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (6): 37-45.doi: 10.19665/j.issn1001-2400.2019.06.006

• • 上一篇    下一篇

一种深度学习的硬件木马检测算法

刘志强1,2,张铭津1,2(),池源3,李云松1   

  1. 1. 西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西 西安 710071
    2. 中国科学院光谱成像技术重点实验室,陕西 西安,710119
    3. 电子元器件可靠性物理及其应用技术重点实验室,广东 广州,510610
  • 收稿日期:2019-05-05 出版日期:2019-12-20 发布日期:2019-12-21
  • 通讯作者: 张铭津
  • 作者简介:刘志强(1995—),男,西安电子科技大学硕士研究生, E-mail:1973468275@qq.com
  • 基金资助:
    国家自然科学基金(61902293);陕西省自然科学基础研究计划(2018JQ6028);中央高校基本科研业务费专项基金(XJS17109);中央高校基本科研业务费专项基金(JBX180102);中国博士后科学基金面上项目(2017M623125);电子元器件可靠性物理及其应用技术重点实验室开放基金(17D03-ZHD201701);国家部委纵向“十三五”公用信息系统装备研究项目(3151****403);中国科学院光谱成像技术重点实验室开放基金(LSIT201901W)

Hardware Trojan detection algorithm based on deep learning

LIU Zhiqiang1,2,ZHANG Mingjin1,2(),CHI Yuan3,LI Yunsong1   

  1. 1. State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
    2. CAS Key Laboratory of Spectral Imaging Technology, Xi’an 710119, China
    3. Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, the Fifth Electronics Research Institute of Ministry of Industry and Information Technology,Guangzhou 510610, China
  • Received:2019-05-05 Online:2019-12-20 Published:2019-12-21
  • Contact: Mingjin ZHANG

摘要:

由于传统的硬件木马检测均采用功能测试等电信号检测技术,检测方法存在成本高、漏检率高和效率低下等问题,对此提出了一种深度学习的非电信号硬件木马检测算法。该算法首先利用增强残差网络将低分辨率芯片显微图像转换为高分辨率芯片显微图像; 然后通过循环一致对抗生成网络将该高分辨率图像生成与母版图像同源的芯片显微图像, 生成的芯片显微图像通过二阶微分图像增强算法区分出目标区域与背景区域,并结合阈值分割算法将目标区域分割出来; 最后通过数学形态学操作去除由于工业噪声产生的微小干扰,利用变化检测算法检测芯片中存在的硬件木马。通过在芯片显微图像数据集上的实验显示,基于深度学习的硬件木马检测方法正检率高达约92.4%,与传统的电信号检测方法相比,精度更高,速度更快,且操作更简易。

关键词: 硬件木马检测, 深度学习, 图像增强, 图像分割, 数学形态学操作, 变化检测

Abstract:

The traditional way of hardware trojan detection based on electrical signal detection has problems of low positive rate, low efficiency and high cost. To solve these problems, we propose a new way of hardware trojan detection based on deep learning which is not electrical signal detection. First, the algorithm changes chip microscopic images of low resolution into chip microscopic images of high resolution by using an enhanced residual network. Then these chip microscopic images of high resolution will generate another chip microscopic images which are similar to those of the golden model. The algorithm for image enhancement distinguishes between target area and background area by combining with the algorithm of image segmentation. Finally, we use the change detection algorithm to detect the hardware trojans existing in the chip after removing minor interference due to industrial noise. Through the experiments on the micrograph dataset of the chip, the positive detection rate of the hardware trojan detection method based on deep learning is as high as 92.4%. Compared with the traditional electrical signal detection method, our algorithm has the advantages of higher precision, faster speed, and easier operation.

Key words: hardware trojan detection, deep learning, image enhancement, image segmentation, mathematical morphology, change detection

中图分类号: 

  • TP274