[1] |
YANG K, HICKS M, DONG Q , et al. A2: Analog Malicious Hardware[C]//Proceedings of the 2016 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2016: 18-37.
|
[2] |
BAO C, FORTE D, SRIVASTAVA A , et al. Reverse Engineering-based Hardware Trojan Detection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016,35(1):49-57.
doi: 10.1109/TCAD.2015.2488495
|
[3] |
薛明富, 王箭, 胡爱群 . 自适应优化的二元分类型硬件木马检测方法[J]. 计算机学报, 2018,41(2):439-451.
|
|
XUE Mingfu WANG Jian, HU Aiqun . Adaptive Optimization of Two-class Classification-based Hardware Trojan Detection Method[J]. Chinese Journal of Computers, 2018,41(2):439-451.
|
[4] |
NOURIAN M A, FAZELI M, HELY D . Hardware Trojan Detection Using an Advised Genetic Algorithm Based Logic Testing[J]. Journal of Electronic Testing, 2018,34(4):461-470.
doi: 10.1007/s10836-018-5739-4
|
[5] |
ZHANG Y, QUAN H, LI X , et al. Golden-free Processor Hardware Trojan Detection Using Bit Power Consistency Analysis[J]. Journal of Electronic Testing, 2018,34(3):305-312.
doi: 10.1007/s10836-018-5715-z
|
[6] |
DE SOUZA FARIA G, KIM H Y . Differential Audio Analysis: a New Side-channel Attack on PIN Pads[J]. International Journal of Information Security, 2019,18(1):73-84.
doi: 10.1007/s10207-018-0403-7
|
[7] |
杨亚君, 陈章 . 分块制造下硬件木马攻击方法及安全性分析[J]. 西安电子科技大学学报, 2019,46(4):167-175.
|
|
YANG Yajun, CHEN Zhang . Hardware Trojan Attack Methods and Security Analysis under Split Manufacturing[J]. Journal of Xidian University, 2019,46(4):167-175.
|
[8] |
赵毅强, 解啸天, 刘燕江 , 等. 基于电路活性测度的硬件木马检测方法[J]. 华中科技大学学报, 2018,46(2):90-94.
|
|
ZHAO Yiqiang, XIE Xiaotian, LIU Yanjiang , et al. Hardware Trojan Detection Method Based on Circuit Activity[J]. Journal of Huazhong University of Science and Technology, 2018,46(2):90-94.
|
[9] |
NEJAT A, HELY D, BEROULLE V . ESCALATION: Leveraging Logic Masking to Facilitate Path-delay-based Hardware Trojan Detection Methods[J]. Journal of Hardware and Systems Security, 2018,2(1):83-96.
doi: 10.1007/s41635-018-0033-6
|
[10] |
BAO C, FORTE D, SRIVASTAVA A . On Reverse Engineering-based Hardware Trojan Detection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016,35(1):49-57.
doi: 10.1109/TCAD.2015.2488495
|
[11] |
RESHMA K, PRIYATHARISHINI M, NIRMALA D M . Hardware Trojan Detection Using Deep Learning Technique[C]//Advances in Intelligent Systems and Computing: 898. Heidelberg: Springer Verlag, 2019: 671-680.
|
[12] |
MENDIS G J, WEI J, MADANAYAKE A . Deep Learning based Radio-signal Identification with Hardware Design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, DOI: 10.1109/TAES.2019.2891155.
doi: 10.1109/TAES.2018.2828218
pmid: 31823972
|
[13] |
ABBASI H, EZZATI-JIVAN N, BELLAICHE M , et al. Machine Learning-based EDoS Attack Detection Technique Using Execution Trace Analysis[J]. Journal of Hardware and Systems Security, 2019,3(2):164-176.
doi: 10.1007/s41635-018-0061-2
|
[14] |
王世平, 毕笃彦, 刘坤 , 等. 一种多映射卷积神经网络的超分辨率重建算法[J]. 西安电子科技大学学报, 2018,45(4):155-160.
|
|
WANG Shiping, BI Duyan, LIU Kun , et al. Multi-mapping Convolution Neural Network for the Image Super-resolution Algorithm[J]. Journal of Xidian University, 2018,45(4):155-160.
|
[15] |
陈晓范, 申海杰, 边倩 , 等. 结合注意力机制的人脸超分辨率重建[J]. 西安电子科技大学学报, 2019,46(3):148-153.
|
|
CHEN Xiaofan, SHEN Haijie, BIAN Qian , et al. Face Image Super-resolution with an Attention Mechanism[J]. Journal of Xidian University, 2019,46(3):148-153.
|
[16] |
ZHANG M J, WANG N N, LI Y S , et al. Bionic Face Sketch Generator[J]. IEEE Transactions on Cybernetics, 2019, DOI: 10.1109/TCYB.2019.2924589.
doi: 10.1109/TCYB.2019.2956316
pmid: 31869813
|
[17] |
ZHANG M, WANG R, GAO X , et al. Dual-transfer Face Sketch-Photo Synjournal[J]. IEEE Transactions on Image Processing, 2019,28(2):642-657.
doi: 10.1109/TIP.2018.2869688
pmid: 30222563
|
[18] |
ZHANG M, LI J, WANG N , et al. Recognition of Facial Sketch Styles[J]. Neurocomputing, 2015,149(PC):1188-1197.
doi: 10.1109/TIP.2018.2869688
pmid: 30222563
|
[19] |
DONG C, LOY C C, TANG X , et al. Learning a Deep Convolutional Network for Image Super-resolution[C]// Lecture Notes in Computer Science: 8692. Heidelberg: Springer Verlag, 2014: 184-199.
|
[20] |
KIM J, LEE J K, LEE K M . Accurate Image Super-resolution Using Very Deep Convolutional Networks[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1646-1654.
|
[21] |
DONG C, LOY C C, TANG X . Accelerating the Super-resolution Convolutional Neural Network[C]//Lecture Notes in Computer Science: 9906. Heidelberg: Springer Verlag, 2016: 391-407.
|
[22] |
LIM B, SON S, KIM H , et al. Enhanced Deep Residual Networks for Single Image Super-resolution[C]// Proceedings of the 2017 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Washington: IEEE Computer Society, 2017: 1132-1140.
|
[23] |
MOSSER L, DUBRULE O, BLUNT M J . Stochastic Reconstruction of an Oolitic Limestone by Generative Adversarial Networks[J]. Transport in Porous Media, 2018,125(1):81-103.
doi: 10.1007/s11242-018-1039-9
|
[24] |
KAWAI Y, SEO M, CHEN Y W . Automatic Generation of Facial Expression Using Generative Adversarial Nets[C]//Proceedings of the 2018 IEEE 7th Global Conference on Consumer Electronics. Piscataway: IEEE, 2018: 329-330.
|
[25] |
ZHU J Y, PARK T, ISOLA P , et al. Unpaired Image-to-image Translation Using Cycle-consistent Adversarial Networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251.
|
[26] |
ZHANG M J, WANG N N, LI Y S , et al. Deep Latent Low-rank Representation for Face Sketch Synjournal[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, DOI: 10.1109/TNNLS.2018.2890017.
doi: 10.1109/TNNLS.2019.2955438
pmid: 31869807
|
[27] |
ZHANG M, LI J, WANG N , et al. Compositional Model-based Sketch Generator in Facial Entertainment[J]. IEEE Transactions on Cybernetics, 2018,48(3):904-915.
doi: 10.1109/TCYB.2017.2664499
pmid: 28212105
|