[1] |
DONGC, LOY C C, HE K , et al. Image Super-resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281
pmid: 26761735
|
[2] |
张瑞, 冯象初, 杨丽霞 , 等. 全局稀疏梯度耦合张量扩散的图像去噪模型[J]. 西安电子科技大学学报, 2017,44(6):150-155.
|
|
ZHANG Rui, FENG Xiangchu, YANG Lixia , et al. Global Sparse Gradient Coupled Tensor Diffusion Model for Image Denoising[J]. Journal of Xidian University, 2017,44(6):150-155.
|
[3] |
LI J, FANG F, MEI K , et al. Multi-scale Residual Network for Image Super-resolution[C]//Lecture Notes in Computer Science: 11212. Heidelberg: Springer Verlag, 2018: 527-542.
|
[4] |
王世平, 毕笃彦, 刘坤 , 等. 一种多映射卷积神经网络的超分辨率重建算法[J]. 西安电子科技大学学报, 2018,45(4):155-160.
|
|
WANG Shiping, BI Duyan, LIU Kun , et al. Multi-mapping Convolution Neural Network for the Image Super-resolution Algorithm[J]. Journal of Xidian University, 2018,45(4):155-160.
|
[5] |
TAI Y, YANG J, LIU X . Image Super-resolution via Deep Recursive Residual Network[C]//Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2790-2798.
|
[6] |
HUANG H, HE R, SUN Z , et al. Wavelet-SRNet: a Wavelet-based CNN for Multi-scale Face Super Resolution[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1698-1706.
|
[7] |
JOHNSON J, ALAHI A, FEI-FEI L . Perceptual Losses for Real-time Style Transfer and Super-resolution[C]//Lecture Notes in Computer Science: 9906. Heidelberg: Springer Verlag, 2016: 694-711.
|
[8] |
LIU W, WEN Y, YUZ Y . et al. Sphereface: Deep Hypersphere Embedding for Face Recognition[C]//Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6738-6746.
|
[9] |
IOFFE S, SZEGEDY C . Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]//Proceedings of the 2015 32nd International Conference on Machine Learning. Lille: International Machine Learning Society, 2015: 448-456.
|
[10] |
SIMONYAN K, ZISSERMAN A . Very Deep Convolutional Networks for Large-scale Image Recognition[C]// Proceedings of the 2015 3rd International Conference on Learning Representations. San Diego: International Conference on Learning Representations, 2015: 1556.
|
[11] |
YI D, LEI Z, LIAO S C , et al. Learning Face Representation from Scratch[J/OL]. [2019-01-02]. https://arxiv.org/pdf/1411.7923.pdf.
|
[12] |
HUANG G B, MATTAR M, BERG T , et al. Labeled Faces in the Wild: a Database for Studying Face Recognition in Unconstrained Environments [EB/OL]. [2019-03-26]. https://www.docin.com/p-1204016448.html.
|
[13] |
ZHANG K, ZHANGZ, LI Z , et al. Joint Face Detection and Alignment Using Multi-task Cascaded Convolutional Networks[J]. IEEE Signal Processing Letters, 2016,23(10):1499-1503.
doi: 10.1109/LSP.2016.2603342
|
[14] |
KINGMA D P, BA J . Adam: a Method for Stochastic Optimization[J/OL].[2019-01-02]. https://arxiv.org/pdf/1412.6980.pdf.
|
[15] |
MARCINIAK T, CHMIELEWSKA A, WEYCHAN R , et al. Influence of Low Resolution of Images on Reliability of Face Detection and Recognition[J]. Multimedia Tools and Applications, 2015,74(12):4329-4349.
doi: 10.1007/s11042-013-1568-8
|
[16] |
CHEN S, LIU Y, GAO X , et al. Mobilefacenets: Efficient CNNs for Accurate Real-time Face Verification on Mobile Devices[C]//Lecture Notes in Computer Science: 10996. Heidelberg: Springer Verlag, 2018: 428-438.
|
[17] |
WEN Y, ZHANG K, LI Z , et al. A Discriminative Feature Learning Approach for Deep Face Recognition[C]//Lecture Notes in Computer Science: 9911. Heidelberg: Springer Verlag, 2016: 499-515.
|