西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (6): 95-101.doi: 10.19665/j.issn1001-2400.2019.06.014

• • 上一篇    下一篇

结合小波与递归神经网络的低分辨率人脸识别

欧阳宁,王先傲,蔡晓东(),林乐平   

  1. 桂林电子科技大学 信息与通信学院, 广西壮族自治区 桂林 541004
  • 收稿日期:2019-04-15 出版日期:2019-12-20 发布日期:2019-12-21
  • 通讯作者: 蔡晓东
  • 作者简介:欧阳宁(1972—),男,教授,E-mail:ynou@guet.edu.cn
  • 基金资助:
    国家自然科学基金(61661017);中国博士后科学基金(2016M602923XB);认知无线电与信息处理重点实验室基金(CRKL160104);认知无线电与信息处理重点实验室基金(CRKL150103);认知无线电与信息处理重点实验室基金(2011KF11);桂林科技开发项目(20150103-6);2018年新疆维吾尔自治区重点研发计划(2018B03022-1);2018年新疆维吾尔自治区重点研发计划(2018B03022-2);广西自然科学基金(2017GXNSFBA198212);广西自然科学基金(2014GXNSFDA118035);广西自然科学基金(2016GXNSFAA38014);桂林电子科技大学研究生教育创新计划(2016YJCXB02);广西科技创新能力与条件建设计划(桂科能1598025-21)

Low resolution face recognition method based on wavelet and recursive neural networks

OUYANG Ning,WANG Xian’ao,CAI Xiaodong(),LIN Leping   

  1. School of Information and Communication Engineering, Guilin University of Electronic Technology,Guilin 541004, China
  • Received:2019-04-15 Online:2019-12-20 Published:2019-12-21
  • Contact: Xiaodong CAI

摘要:

针对低分辨率人脸图像缺少有效信息而导致识别率较低的问题,提出一种结合哈尔小波与递归神经网络的低分辨率人脸识别方法。首先,通过深层网络直接预测小波系数,经过小波逆变换得到高分辨率人脸图像,可以有效地重建高频信息;其次,在卷积神经网络中加入递归模块,在增加网络深度的同时减少参数冗余,提升模型的映射能力;最后,提出一种优化的重建与感知损失融合方法,将小波系数重建损失与感知损失进行加权融合,用以生成有利于识别的人脸图像。基于公开数据集,对图像重建质量与识别性能进行了对比。实验结果表明,即使在极低的分辨率条件下(8×8,16×16),仍然能够重建出更加锐利的人脸图像。在此基础上,其识别能力优于目前领先的超分辨率重建算法。

关键词: 哈尔小波, 递归神经网络, 人脸识别, 融合损失, 超分辨率重建

Abstract:

To improve the accuracy of low-resolution face recognition with limited information, a method based on the Haar wavelet and recurrent neural network is proposed. First, the wavelet coefficients are directly predicted through the deep neural network. High-resolution face images with high-frequency information can be reconstructed by the inverse wavelet transform. Second, a recursive module is added to the convolutional neural network to increase the depth of the network, which can reduce the redundancy of parameters effectively. Finally, a fusion loss method is utilized, in which the loss of wavelet coefficients reconstruction and the perceptual are weighted and fusioned to generate images for recognition. Based on open dataset, the image reconstruction quality and recognition performance are compared, respectively. Experimental results show that sharper face images can be reconstructed even with extremely low resolutions (8×8, 16×16), and that its recognition ability outperforms that of state-of-the-art face super resolution algorithms.

Key words: Haar wavelet, recursive neural network, face recognition, fusion loss, super resolution

中图分类号: 

  • TP183