西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (6): 112-117.doi: 10.19665/j.issn1001-2400.2019.06.016

• • 上一篇    下一篇

生成对抗网络用于视频去模糊

申海杰,边倩,陈晓范,王振铎,田新志   

  1. 西安思源学院 电子信息工程学院, 陕西 西安 710038
  • 收稿日期:2019-06-08 出版日期:2019-12-20 发布日期:2019-12-21
  • 作者简介:申海杰(1981—), 男, 讲师,E-mail:herry_workmail@126.com
  • 基金资助:
    国家自然科学基金(81571772);西安思源学院自然科学研究基金(XASY-B1603);陕西省教育厅自然科学研究基金(17JK1073)

Video deblurring using the generative adversarial network

SHEN Haijie,BIAN Qian,CHEN Xiaofan,WANG Zhenduo,TIAN Xinzhi   

  1. School of Electronical and Information Engineering, Xi’an Siyuan University, Xi’an 710038, China
  • Received:2019-06-08 Online:2019-12-20 Published:2019-12-21

摘要:

针对因拍摄设备抖动或目标运动而产生的视频模糊问题,提出了一种基于生成对抗网络和马尔可夫判别网络的新的视频去模糊方法。文中将基于像素空间的损失函数与基于特征空间的损失函数相结合,并依据马尔可夫判别网络设计了一种新的判别网络,促进了网络对图像纹理细节的学习,使得生成的清晰图像质量得到了显著提升。将文中方法与同类方法分别在测试集和真实数据上进行了定性定量的比较,实验结果表明,经文中方法去模糊后的图像具有更高的峰值信噪比和更丰富的细节信息。

关键词: 视频去模糊, 生成对抗网络, 马尔可夫判别网络

Abstract:

A video deblurring network based on the generative adversarial network and the Markovian discriminator is proposed to solve the video deblurring problem, which is caused by camera shaking or object movement. In this paper, we combine the pixel-space and feature-space loss, and design a discriminator based on the Markovian discriminator, which promotes the learning of image texture details and improves the quality of the generated image. The proposed method and the state-of-the-art methods are compared qualitatively and quantitatively on the test set and real video set, respectively. Experimental results indicate that the image deblurred by the proposed method has a higher peak signal-to-noise ratio and richer details.

Key words: video deblurring, generative adversarial network, Markovian discriminator

中图分类号: 

  • TP391