西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (1): 44-51.doi: 10.19665/j.issn1001-2400.2020.01.007

• • 上一篇    下一篇

利用联合图模型的传感器网络数据修复方法

杨杰1,蒋俊正1,2()   

  1. 1. 桂林电子科技大学 信息与通信学院,广西壮族自治区 桂林 541004
    2. 桂林电子科技大学 广西无线宽带通信与信号处理重点实验室,广西壮族自治区 桂林 541004
  • 收稿日期:2019-06-14 出版日期:2020-02-20 发布日期:2020-03-19
  • 通讯作者: 蒋俊正
  • 作者简介:杨 杰(1991—),男,桂林电子科技大学博士研究生,E-mail:yjie934@bupt.edu.cn
  • 基金资助:
    国家自然科学基金(61761011)

Method for data recovery in the sensor network based on the joint graph model

YANG Jie1,JIANG Junzheng1,2()   

  1. 1. School of Information and Communication, Guilin Univ. of Electronic Technology, Guilin 541004, China
    2. Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin Univ. of Electronic Technology, Guilin 541004, China
  • Received:2019-06-14 Online:2020-02-20 Published:2020-03-19
  • Contact: Junzheng JIANG

摘要:

为了保证无线传感器网络数据本身的可靠性,以及不会因为数据缺失而导致数据处理过程中的效率降低,提出了一种利用联合图模型的传感器网络数据修复算法。首先基于网络数据的时间域平滑特性和空间域平滑特性建立联合图域模型,然后根据联合图域模型中网络数据的关联特性设计迭代恢复算法,最终实现网络数据恢复的目的。通过实验仿真表明,该方法与图信号模型中基于图全变分最小化算法相比,利用联合图模型的修复算法不仅数据修复精度提高约30%,迭代次数下降约80%。

关键词: 无线传感器网络, 数据修复, 图信号处理, 联合图模型

Abstract:

In order to ensure that the sensor network data are reliable, and that the efficiency of data processing is not reduced due to the lack of network data, a method for data recovery in the sensor network based on the joint graph model is proposed. First, this paper establishes a joint graph domain model based on the smoothness of network data in the time-domain and spatial-domain, and then an iterative recovery method is proposed to recover the network data, which is based on the association characteristics of network data in the joint graph domain model. Experimental simulation shows that compared with the recovery method based on graph total variation minimization in the graph signal model, the method of data recovery based on the joint graph model improves not only by about thirty percent of the data recovery accuracy, but also by about eighty percent of the iteration efficiency.

Key words: wireless sensor networks, data recovery, graph signal processing, joint graph model

中图分类号: 

  • TN911.7