西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (2): 46-53.doi: 10.19665/j.issn1001-2400.2020.02.007

• • 上一篇    下一篇

一种用于点云分类的轻量级深度神经网络

闫林,刘凯,段玫妤   

  1. 西安电子科技大学 计算机科学与技术学院,陕西 西安 710071
  • 收稿日期:2019-09-28 出版日期:2020-04-20 发布日期:2020-04-26
  • 作者简介:闫林(1989—),男,西安电子科技大学博士研究生,E-mail:yanlin_1@stu.xidian.edu.cn
  • 基金资助:
    国家自然科学基金(61850410523)

Lightweight deep neural network for point cloud classification

YAN Lin,LIU Kai,DUAN Meiyu   

  1. School of Computer Science and Technology, Xidian University, Xi’an 710071, China
  • Received:2019-09-28 Online:2020-04-20 Published:2020-04-26

摘要:

在使用深度神经网络进行点云分类时,可以将点云转化为三维体素或是从多个角度将网格模型渲染成图片后进行处理,但转换过程会耗费额外的计算和存储资源;而使用原始点云作为输入的方法,其网络规模和计算复杂度又给算法在嵌入式环境部署带来困难。在对这些算法深入研究的基础上,提出一种轻量级的双路径神经网络模型,无须转换点云数据格式,使用0.8兆浮点数的参数量,达到和主流方法相当的分类精度。双路径结构利用点云的点内和点间表示方式,在避免多尺度学习引入的复杂结构和计算的同时,挖掘了全局特征和局部细粒度特征。实验结果表明,该网络模型可对ModelNet40和MNIST数据集进行准确分类,且设计具有合理性。

关键词: 机器学习, 深度学习, 模式识别, 点云分类

Abstract:

For point cloud classification, deep learning based methods use operations like voxelization to generate regular 3D grids or render the 3D mesh into a collection of images from multiple angles. However, the conversion will introduce additional computing and storage consumption. Some methods directly consume the raw point cloud. But their network scale and computational complexity make it difficult for them to deploy in embedded environments. On the basis of intensive studies of these algorithms, a novel lightweight dual path way network is proposed in this paper. Without additional conversion, our network attains a comparable performance but has 0.8 million floating parameters only. With point-wise and neighbor-wise representations, our approach incorporates global and local features of the point cloud. Experimental results on ModelNet40 and MNIST data-set demonstrate that our method achieves a good accuracy, and prove the effectiveness of our design.

Key words: machine learning, deep learning, pattern recognition, point cloud classification

中图分类号: 

  • TP391