[1] |
张金刚, 方圆, 袁豪 , 等. 一种识别表情序列的卷积神经网络[J]. 西安电子科技大学学报, 2018,45(1):150-155.
|
[2] |
ZHANG Jingang, FANG Yuan, YUAN Hao , et al. Multiple Convolutional Neural Networks for Facial Expression Sequence Recognition[J]. Journal of Xidian University, 2018,45(1):150-155.
|
[3] |
朱苏雅, 杜建超, 李云松 , 等. 采用U-Net卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019,46(4):35-42.
|
[4] |
ZHU Suya, Du Jianchao, LI Yunsong , et al. Method for Bridge Crack Detection Based on the U-Net Convolutional Networks[J]. Journal of Xidian University, 2019,46(4):35-42.
|
[5] |
刘道华, 崔玉爽, 赵岩松 , 等. 一种改进卷积神经网络的教学图像检索方法[J]. 西安电子科技大学学报, 2019,46(3):52-58.
|
[6] |
LIU Daohua, CUI Yushuang, ZHAO Yansong , et al. Method for Retrieving the Teaching Image Based on the Improved Convolutional Neural Network s[J]. Journal of Xidian University, 2019,46(3):52-58.
|
[7] |
MATURANA D, SCHERER S , et al. VoxNet: A 3D Convolutional Neural Network forReal-time Object Recognition[C]// Proceedings of the 2015 IEEE International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2015: 922-928.
|
[8] |
WANG P S, LIU Y, GUO Y X , et al. O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis[J]. ACM Transactions on Graphics, 2017,36(4):72.
|
[9] |
RIEGLERG, ULUSOY A O, GEIGER A , et al. OctNet: Learning Deep 3D Representations at High Resolutions[C]// Proceedings of the 2017 30th IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6620-6629.
|
[10] |
SU H, MAJI S, KALOGERAKIS E , et al. Multi-view Convolutional Neural Networks for 3D Shape Recognition[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 945-953.
|
[11] |
QI C R, SU H, NIEBNER M , et al. Volumetric and Multi-view CNNs for Object Classification on 3D Data[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 5648-5656.
|
[12] |
HONG R, HU Z, WANG R , et al. Multi-view Object Retrieval via Multi-scale Topic Models[J]. IEEE Transactions on Image Processing, 2016,25(12):5814-5827.
|
[13] |
QI C R, SU H, MO K , et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85.
|
[14] |
QI C R, YI L, SU H , et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[C]// Advances in Neural Information Processing Systems: 2017. Vancouver: Neural Information Processing Systems Foundation, 2017: 5100-5109.
|
[15] |
ZAHEER M, KOTTUR S, RAVANBAKHSH S , et al. Deep Sets[C]// Advances in Neural Information Processing Systems: 2017. Vancouver: Neural Information Processing Systems Foundation, 2017: 3392-3402.
|
[16] |
WU Z, SONG S, KHOSLA A , et al. 3D ShapeNets:a Deep Representation for Volumetric Shapes[C]// Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 1912-1920.
|
[17] |
HUA B S, TRANM K, YEUNG S K , et al. Pointwise Convolutional Neural Networks[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 984-993.
|
[18] |
LI Q D, GRIFFITHS J G , et al. Least Squares Ellipsoid Specific Fitting[C]// Proceedings-Geometric Modeling and Processing 2004. Washington: IEEE Computer Society, 2004: 335-340.
|
[19] |
RAVANBAKHSH S, SCHNEIDER J, POCZOS B , et al. Deep Learning with Sets and Point Clouds[C]// Workshop Track Proceedings of the 2019 5th International Conference on Learning Representations. San Diego: International Conference on Learning Representations, 2019: 149805.
|
[20] |
LECUN Y, BOTTOU L, BENGIO Y , et al. Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
|
[21] |
LIN M, CHEN Q, YAN S C , et al. Network in Network[C]// Conference Track Proceedings of the 2014 2nd International Conference on Learning Representations. San Diego: International Conference on Learning Representations, 2014: 149797.
|