西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (3): 32-39.doi: 10.19665/j.issn1001-2400.2020.03.005

• • 上一篇    下一篇

一种改进的边缘层节点健康态势预估方法

孙骞1,2,张家瑞1(),高岭2,3(),王宇翔1,杨建锋1   

  1. 1.西北大学 现代教育技术中心,陕西 西安 710127
    2.西北大学 信息科学与技术学院,陕西 西安 710127
    3.西安工程大学 计算机科学学院,陕西 西安 710048
  • 收稿日期:2019-10-16 出版日期:2020-06-20 发布日期:2020-06-19
  • 通讯作者: 张家瑞,高岭
  • 作者简介:孙骞(1980—),男,高级工程师,博士,E-mail: sq@nwu.edu.cn
  • 基金资助:
    国家自然科学基金(61572401);赛尔网络下一代互联网技术创新项目(NGII20150403)

Health prediction algorithm for edge layer nodes

SUN Qian1,2,ZHANG Jiarui1(),GAO Ling2,3(),WANG Yuxiang1,YANG Jianfeng1   

  1. 1. Modern Educational Technology Center, Northwest University, Xi’an 710127, China
    2. National Local Joint Engineering Research Center for New Network Intelligent Information Services,Institute of Information Science and Technology, Northwest University, Xi’an 710127, China
    3. National Local Joint Engineering Research Center for New Network Intelligent Information Services,Institute of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China
  • Received:2019-10-16 Online:2020-06-20 Published:2020-06-19
  • Contact: Jiarui ZHANG,Ling GAO

摘要:

针对现有的基于隐马尔可夫模型的边缘节点状态预估算法存在参数初值选取主观性较强、特征权重设置依赖经验、多维特征节点分析适应性差等问题,提出一种改进的边缘层节点健康状态预估算法。首先在算法的数据处理层,基于聚类实现对模型参数和观测序列量化进行优化;然后在算法的训练层,用多个单特征隐马尔可夫过程对多特征隐马尔可夫模型进行建模;最后在算法优化层,采用基于信息增益的自适应遗传算法对隐马尔可夫模型生成的状态序列进行优化和约简,有效地解决了特征权重设置和参数初值选取主观性强的问题。实验结果表明,与现有算法比较,该算法有效地提高了大规模边缘层节点的高维度健康状态的准确性。

关键词: 边缘节点, k均值聚类, 隐马尔可夫模型, 自适应遗传算法

Abstract:

An improved state prediction algorithm for edge layer nodes is proposed to solve the problem of the existing state prediction algorithm for edge layer nodes based on Hidden Markov, such as the subjectivity of initial parameter selection, the dependence of feature weights setting on experience, and the bad adaptability of multidimension feature node analysis. At the data processing layer of the algorithm, the parameter of the model and observation sequence are optimized by the method of clustering; and then at the training layer of the algorithm, the single-feature Hidden Markov Model is used to model the multi-feature Hidden Markov Model; finally, an adaptive genetic algorithm based on the information gain is used to optimize and reduce the state sequence generated by the Hidden Markov Model. The problems of feature weight setting and parameter initial value selection are solved effectively. Experimental results show that the proposed algorithm effectively improves the accuracy of the high-dimensional health state of large-scale edge layer nodes compared with the existing algorithms.

Key words: edge layer nodes, k-means, hidden Markov model, adaptive genetic algorithm

中图分类号: 

  • TP311