西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (3): 50-57.doi: 10.19665/j.issn1001-2400.2020.03.007

• • 上一篇    下一篇

跨层精度自动调节的k均值聚类近似计算方法

李钊,袁文浩,任崇广,黄程程,董霄霄   

  1. 山东理工大学 计算机科学与技术学院,山东 淄博 255000
  • 收稿日期:2019-10-08 出版日期:2020-06-20 发布日期:2020-06-19
  • 作者简介:李钊(1983—),男,讲师,博士,E-mail: lizhao_buaa@126.com
  • 基金资助:
    国家自然科学基金(61701286);山东省自然科学基金(ZR2018LF002);山东省自然科学基金(ZR2017LF004);山东省高等学校青年创新团队发展计划(2019KJN048);淄博市校城融合项目(2018ZBXC021)

Approximate computing method based on cross-layer dynamic precision scaling for the k-means

LI Zhao,YUAN Wenhao,REN Chongguang,HUANG Chengcheng,DONG Xiaoxiao   

  1. School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
  • Received:2019-10-08 Online:2020-06-20 Published:2020-06-19

摘要:

随着人工智能在嵌入式平台上的应用,k均值聚类算法作为人工智能方法的基础,促使其在嵌入式平台上实现,而能耗是制约算法在嵌入式平台上实现的关键。为了降低k均值聚类在嵌入式平台上的能耗,提出一种针对k均值聚类的跨层精度自动调节的近似计算方法。首先, 分别从数据点到质心的距离和数据点变化趋势两个方面对迭代过程进行约束,提出精度自动调节的方法; 然后, 从结构级设计外部存储器的数据重组与访问方法,实现存储器的近似访问; 设计精度自动调节的近似加法器与乘法器,最终实现k均值聚类算法的近似计算。实验结果表明,这种近似计算方法在基本不影响聚类质量的前提下,与精确计算相比较可降低55%~58%的能耗,节省能耗的比例最高。

关键词: 近似计算, 精度自动调节, k均值聚类, 能耗

Abstract:

With the application of artificial intelligence on the embedded platform, the k-means clustering algorithm, as the basis of the artificial intelligence method, is implemented on the embedded platform. Energy consumption is the key for the algorithm implementation on the embedded platform. In order to reduce the energy consumption of the k-means on the embedded platform, an approximate computing method based on cross-layer dynamic precision scaling for the k-means is proposed. First, the iteration process is constrained from the distance between data point to centroid and data point change trend. And a dynamic precision scaling method is proposed. Then the data reorganization and access method of external memory is designed from the structural level, which can realize the access of approximate memory. In addition, the approximate adder and multiplier are designed which can automatically adjust the calculation accuracy. Finally, the approximate computing of the k-means is realized. Experimental results show that the proposed method can reduce the energy consumption by 55%~58% compared with the accurate computing without affecting the quality of clustering. The proportion of the energy saving is the highest.

Key words: approximate computing, dynamic precision scaling, k-means clustering, energy consumption

中图分类号: 

  • TP18