[1] |
KANG M, LIM S, GONUGONDLA S, et al. An In-memory VLSI Architecture for Convolutional Neural Networks[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018,8(3):494-505.
doi: 10.1109/JETCAS.2018.2829522
|
[2] |
LIU Q, LIU J, SANG R., et al. Fast Neural Network Training on FPGA Using Quasi-Newton Optimization Method[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018,26(8):1575-1579.
doi: 10.1109/TVLSI.2018.2820016
|
[3] |
HAJDUK Z. Hardware Implementation of Hyperbolic Tangent and Sigmoid Activation Function[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2018,66(5):563-577.
|
[4] |
DEL CAMPO I, FINKER R, ECHANOBE J, et al. Controlled Accuracy Approximation of Sigmoid Function for Efficient FPGA-based Implementation of Artificial Neurons[J]. Electronics Letters, 2013,49(25):1598-1600.
doi: 10.1049/el.2013.3230
|
[5] |
NAMIN A H, LEBOEUF K, MUSCEDERE R, et al. Efficient Hardware Implementation of the Hyperbolic Tangent Sigmoid Function [C]//Proceedings of the IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2009: 2117-2120.
|
[6] |
TIWARI V, KHARE N. Hardware Implementation of Neural Network with Sigmoidal Activation Functions Using CORDIC[J]. Microprocessors and Microsystems, 2015,39(6):373-381.
doi: 10.1016/j.micpro.2015.05.012
|
[7] |
NASCIMENTO I, JARDIM R, MORGADO D F. A New Solution to the Hyperbolic Tangent Implementation in Hardware: Polynomial Modeling of the Fractional Exponential Part[J]. Neural Computing and Applications, 2013,23(2):363-369.
doi: 10.1007/s00521-012-0919-0
|
[8] |
ARMATO A, FANUCCI L, SCILINGO E P, et al. Low-error Digital Hardware Implementation of Artificial Neuron Activation Functions and Their Derivative[J]. Microprocessors and Microsystems, 2011,35(6):557-567.
doi: 10.1016/j.micpro.2011.05.007
|
[9] |
BAJGER M, OMONDI A. Low-error, High-speed Approximation of the Sigmoid Function for Large FPGA Implementations[J]. Journal of Signal Processing Systems, 2008,52(2):137-151.
doi: 10.1007/s11265-007-0140-z
|
[10] |
SAVICH A W, MOUSSA M, AREIBI S. The Impact of Arithmetic Representation on Implementing MLP-BP on FPGAs: a Study[J]. IEEE Transactions on Neural Networks, 2007,18(1):240-252.
doi: 10.1109/TNN.2006.883002
|
[11] |
GOMAR S, MIRHASSANI M, AHMADI M. Precise Digital Implementations of Hyperbolic Tanh and Sigmoid Function [C]//Proceedings of the Asilomar Conference on Signals, Systems and Computers. Washington: IEEE Computer Society, 2016: 1586-1589.
|
[12] |
NGAH S, BAKAR R A. Sigmoid Function Implementation Using the Unequal Segmentation of Differential Lookup Table and Second Order Nonlinear Function[J]. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 2017,9(2):103-108.
|
[13] |
MITRA S, CHATTOPADHYAY P. Challenges in Implementation of ANN in Embedded System [C]//Proceedings of the International Conference on Electrical, Electronics, and Optimization Techniques. Piscataway: IEEE, 2016: 1794-1798.
|
[14] |
ZAMANLOOY B, MIRHASSANI M. An Analog CVNS-based Sigmoid Neuron for Precise Neurochips[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017,25(3):894-906.
doi: 10.1109/TVLSI.2016.2615306
|
[15] |
DATTA D, AGARWAL S, KUMAR V, et al. Design of Current Mode Sigmoid Function and Hyperbolic Tangent Function [C]//Proceedings of the Communications in Computer and Information Science. Heidelberg: Springer, 2019: 47-60.
|
[16] |
LECUN Y. MNIST Handwritten Digit Database[DB/OL]. [ 2019-10-12]. http://yann. lecun. com/exdb/mnist/.
|