西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (3): 105-112.doi: 10.19665/j.issn1001-2400.2020.03.015

• • 上一篇    下一篇

一种用于锥体目标微动分类的深度学习模型

李江1,冯存前1,2,王义哲1,许旭光1   

  1. 1.空军工程大学 防空反导学院,陕西 西安,710051
    2.信息感知技术协同创新中心,陕西 西安,710077
  • 收稿日期:2019-10-13 出版日期:2020-06-20 发布日期:2020-06-19
  • 作者简介:李江(1995—),男,空军工程大学硕士研究生,E-mail: 1031065052@qq.com
  • 基金资助:
    国家自然科学基金(61701526);国家自然科学基金(61701528);陕西省自然科学基础研究计划(2019JQ-336)

Deep learning model for micro-motion classification of cone targets

LI Jiang1,FENG Cunqian1,2,WANG Yizhe1,XU Xuguang1   

  1. 1. Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
    2. Collaborative Innovation Center of Information Sensing and Understanding, Xi'an 710077, China
  • Received:2019-10-13 Online:2020-06-20 Published:2020-06-19

摘要:

针对传统的空间锥体目标微动分类需人工构造、提取特征而缺乏通用性、智能性及在强噪声条件下分类性能差等问题,提出一种卷积神经网络和双向长短期记忆网络相结合的网络新模型。该网络将残差网络、Inception网络及双向长短期记忆网络融合成一体化网络,通过增加网络的深度和宽度来挖掘更高维度的抽象特征以提升网络的分类准确率,而双向长短期记忆网络的推理能力能提高网络的容错性,时序分类的优势,以及残差网络跳跃式的旁路支线结构还能减少参数冗余,加快网络训练速度。仿真结果表明,该网络模型不仅能实现更快速的智能分类,同时比ResNet-18、GoogLeNet模型的精度分别提高5%、4%,验证了该模型的有效性和泛化能力。

关键词: 空间锥体目标, 微动分类, 时频分析, 深度学习

Abstract:

To overcome the shortcomings of traditional micro-motion classification of spatial cone targets, such as manual construction, feature extraction, and lack of generality, intelligence and poor classification performance under strong noise, a new network model combining a convolutional neural network and a bidirectional long short-term memory network is proposed. The network combines the residual network, inception network and bidirectional long short-term memory network into an integrated network. By increasing the depth and width of the network to mine the abstract features of higher dimensions, the classification accuracy of the network can be improved. The reasoning ability of the bidirectional long short-term memory network can improve the fault tolerance of the network, and the advantages of time series classification and the jumping bypass branch structure of the residual network can also reduce parameter redundancy and speed up network training. Simulation results show that the network model not only achieves faster intelligent classification, but also improves the accuracy of ResNet-18 and GoogLeNet models by 5% and 4% respectively, thus verifying the validity and generalization ability of the model.

Key words: spatial cone target, micro-motion classification, time-frequency analysis, deep learning

中图分类号: 

  • TN957