[1] |
CHEN V C. Analysis of Radar Micro-Doppler Signature with Time-frequency Transform [C]//Proceedings of the 2000 10th IEEE Workshop on Statistical Signal and Array Processing. Piscataway: IEEE, 2000: 463-466.
|
[2] |
CHEN V C, LI F, HO S S, et al. Analysis of Micro-Doppler Signatures[J]. IEE Proceedings: Radar, Sonar and Navigation, 2003,150(4):271-276.
doi: 10.1049/ip-rsn:20030743
|
[3] |
WANG Y Z, ZHANG Y S, HE S S, et al. Precession Parameters Estimation of Space Rotationally Symmetric Targets Based on HRRP Sequences[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018,E101A(9):1580-1584.
|
[4] |
韩勋, 杜兰, 刘宏伟, 等. 基于时频分布的空间锥体目标微动形式分类[J]. 系统工程与电子技术, 2013,35(4):684-691.
doi: 10.3969/j.issn.1001-506X.2013.04.02
|
|
HAN Xun, DU Lan, LIU Hongwei, et al. Classfifcation of Micro Motion form of Space Cone Shaped Objects Based on Time-frequency Distribution[J]. Systems Engineering and Electronics, 2013,35(4):684-691.
doi: 10.3969/j.issn.1001-506X.2013.04.02
|
[5] |
关永胜, 左群声, 刘宏伟, 等. 空间锥体目标微动特性分析与识别方法[J]. 西安电子科技大学学报, 2011,38(2):105-111.
|
|
GUAN Yongsheng, ZUO Qunsheng, LIU Hongwei, et al. Micro-motion Characteristic Analysis and Recognition of Cone-shaped Targets[J]. Journal of Xidian University, 2011,38(2):105-111.
|
[6] |
束长勇, 张生俊, 黄沛霖, 等. 基于微多普勒的空间锥体目标微动分类[J]. 北京航空航天大学学报, 2017,43(7):1387-1394.
|
|
SHU Changyong, ZHANG Shengjun, HUANG Peilin, et al. Micro-motion Classification of Spatial Cone Target Based on Micro-Doppler[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017,43(7):1387-1394.
|
[7] |
刘树东, 王晓敏, 张艳. 一种对称残差CNN的图像超分辨率重建方法[J]. 西安电子科技大学学报, 2019,46(5):15-23.
|
|
LIU Shudong, WANG Xiaomin, ZHANG Yan. Symmetric Residual Convolution Neural Networks for the Image Super-resolution Reconstruction[J]. Journal of Xidian University, 2019,46(5):15-23.
|
[8] |
YUEK, YANG L, LI R R, et al. TreeUNet: Adaptive Tree Convolutional Neural Networks for Subdecimeter Aerial Image Segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,156(10):1-13.
doi: 10.1016/j.isprsjprs.2019.07.007
|
[9] |
王世平, 毕笃彦, 刘坤, 等. 一种多映射卷积神经网络的超分辨率重建算法[J]. 西安电子科技大学学报, 2018,45(4):155-160.
|
|
WANG Shiping, BI Duyuan, LIU Kun, et al. Multi Mapping Convolution Neural Network for the Image Super-resolution Algorithm[J]. Journal of Xidian University, 2018,45(4):155-160.
|
[10] |
YANG Y, HOU C P, LANG Y, et al. Person Identification Using Micro-Doppler Signatures of Human Motions and UWB Radar[J]. IEEE Microwave and Wireless Components Letters, 2019,29(5):366-368.
doi: 10.1109/LMWC.7260
|
[11] |
CAO P B, XIA W J, YE M, et al. Radar-ID: Human Identification Based on Radar Micro-Doppler Signatures Using Deep Convolutional Neural Networks[J]. IET Radar, Sonar and Navigation, 2018,12(7):729-734.
doi: 10.1049/iet-rsn.2017.0511
|
[12] |
SKARIA S, AI-HOURANI A, LECH M, et al. Hand-gesture Recognition Using Two-antenna Doppler Radar with Deep Convolutional Neural Networks[J]. IEEE Sensors Journal, 2019,19(8):3041-3048.
doi: 10.1109/JSEN.2019.2892073
|
[13] |
PAN M, JIANG J, KONG Q, et al. Radar HRRP Target Recognition Based on t-SNE Segmentation and Discriminant Deep Belief Network[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(9):1609-1613.
doi: 10.1109/LGRS.2017.2726098
|
[14] |
苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018,7(5):565-574.
|
|
SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and Classification of Maritime Target with Micro-motion Based on CNNs[J]. Journal of Radars, 2018,7(5):565-574.
|
[15] |
DONG Y B, ZHANG H, WANG C, et al. Fine-grained Ship Classification Based on Deep Residual Learning for High-resolution SAR Images[J]. Remote Sensing Letters, 2019,10(11):1095-1104.
doi: 10.1080/2150704X.2019.1650982
|
[16] |
WEN Z G, LIU D, LIU X Q, et al. Deep Learning Based Smart Radar Vision System for Object Recognition[J]. Journal of Ambient Intelligence and Humanized Computing, 2019,10(3):829-839.
doi: 10.1007/s12652-018-0853-9
|
[17] |
LIU W B, YUAN J W, ZHANG G, et al. HRRP Target Recognition Based on Kernel Joint Discriminant Analysis[J]. Journal of Systems Engineering and Electronics, 2019,30(4):703-708.
doi: 10.21629/JSEE.2019.04.08
|
[18] |
徐彬, 陈渤, 刘家麒, 等. 采用双向LSTM模型的雷达HRRP目标识别[J]. 西安电子科技大学学报, 2019,46(2):29-34.
|
|
XU Bin, CHEN Bo, LIU Jiaqi, et al. Radar HRRP Target Recognition by the Bidirectional LSTM Model[J]. Journal of Xidian University, 2019,46(2):29-34.
|
[19] |
WANG Y Z, FENG C Q, ZHANG Y S, et al. Classification of Space Targets with Micro-Motion Based on Deep CNN [C]//Proceedings of the 2019 IEEE 2nd International Conference on Electronic Information and Communication Technology. Piscataway: IEEE, 2019: 557-561.
|
[20] |
WANG J, ZHU H, LEI P, et al. CNN Based Classification of Rigid Targets in Space Using Radar Micro-Doppler Signatures[J]. Chinese Journal of Electronics, 2019,28(4):856-862.
doi: 10.1049/cje.2018.08.003
|
[21] |
AINUJAIM I, OH D, PARK I, et al. Classification of Micro-Doppler Signatures Measured by Doppler Radar Through Transfer Learning [C]//Proceedings of the 2019 13th European Conference on Antennas and Propagation. Piscataway: IEEE, 2019: 8740208.
|
[22] |
HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition [C]//Proceedings of the 2016 IEEE Computer Society Conference on Compute Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
|
[23] |
SZEGEDY C, LIU W, JIA Y Q, et al. Going Deeper with Convolutions [C]//Proceedings of the 2015 IEEE Computer Society Conference on Compute Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 1-9.
|
[24] |
BENGIO Y, SIMARD P, FRASCONI P. Learning Long-Term Dependencies with Gradient Descent is Difficult[J]. IEEE Transactions on Neural Networks, 1994,5(2):157-166.
doi: 10.1109/TNN.72
|