[1] |
BRENNER D J, ELLISTON C D, HALL E J, et al. Estimated Risks of Radiation-induced Fatal Cancer from Pediatric CT[J]. American Journal of Roentgenology, 2001,176(2):289-296.
pmid: 11159059
|
[2] |
CHEN Y, YIN X, SHI L, et al. Improving Abdomen Tumor Low-dose CT Images Using a Fast Dictionary Learning Based Processing[J]. Physics in Medicine and Biology, 2013,58(16):5803-5820.
doi: 10.1088/0031-9155/58/16/5803
pmid: 23917704
|
[3] |
HA S, MUELLER K. Low Dose CT Image Restoration Using a Database of Image Patches[J]. Physics in Medicine and Biology, 2015,60(2):869-882.
pmid: 25565336
|
[4] |
CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a Residual Encoder-decoder Convolutional Neural Network[J]. IEEE Transactions on Medical Imaging, 2017,36(12):2524-2535.
doi: 10.1109/TMI.2017.2715284
pmid: 28622671
|
[5] |
WOLTERINK J M, LEINER T, VIERGEVER M A, et al. Generative Adversarial Networks for Noise Reduction in Low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017,36(12):2536-2545.
doi: 10.1109/TMI.2017.2708987
pmid: 28574346
|
[6] |
MEHTA S, RASTEGARI M, CASPI A, et al. Espnet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation[C]// Lecture Notes in Computer Science: 11214. Heidelberg: Springer Verlag, 2018: 561-580.
|
[7] |
PENG Y, ZHANG L, LIU S, et al. Dilated Residual Networks with Symmetric Skip Connection for Image Denoising[J]. Neurocomputing, 2019,345:67-76.
doi: 10.1016/j.neucom.2018.12.075
|
[8] |
LU Z, YU Z, YA-LI P, et al. Fast Single Image Super-resolution via Dilated Residual Networks[J]. IEEE Access, 2018,7:109729-109738.
doi: 10.1109/Access.6287639
|
[9] |
GUO S, YAN Z, ZHANG K, et al. Toward Convolutional Blind Denoising of Real Photographs[C]// Proceedings of the 2019 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2019: 1712-1722.
|
[10] |
欧阳宁, 王先傲, 蔡晓东, 等. 结合小波与递归神经网络的低分辨率人脸识别[J]. 西安电子科技大学学报, 2019,46(6):95-101.
|
|
OUYANG Ning, WANG Xian’ao, CAI Xiaodong, et al. Low Resolution Face Recognition Method Based on Wavelet and Recursive Neural Networks[J]. Journal of Xidian University, 2019,46(6):95-101.
|
[11] |
刘树东, 王晓敏, 张艳. 一种对称残差CNN的图像超分辨率重建方法[J]. 西安电子科技大学学报, 2019,46(5):15-23.
|
|
LIU Shudong, WANG Xiaomin, ZHANG Yan. SymmetricResidual Convolution Neural Networks for the Image Super-resolution Reconstruction[J]. Journal of Xidian University, 2019,46(5):15-23.
|
[12] |
ZHANG K, ZUO W, ZHANG L. FFDNet: Toward a Fast and Flexible Solution for CNN-based Image Denoising[J]. IEEE Transactions on Image Processing, 2018,27(9):4608-4622.
doi: 10.1109/TIP.2018.2839891
|
[13] |
WANG P, CHEN P, YUAN Y, et al. Understanding Convolution for Semantic Segmentation[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1451-1460.
|
[14] |
SHI W, CABALLERO J, HUSZAR F, et al. Real-time Single Image and Video Super-resolution Using an Efficient Sub-pixel Convolutional Neural Network[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1874-1883.
|
[15] |
MCCOLLOUGH C H, BARTLEY A C, CARTER R E, et al. Low‐dose CT for the Detection and Classification of Metastatic Liver Lesions: Results of the 2016 Low Dose CT Grand Challenge[J]. Medical Physics, 2017,44(10):339-352.
|
[16] |
FLOHR T G, STIERSTORFER K, ULZHEIMER S, et al. Image Reconstruction and Image Quality Evaluation for a 64-slice CT Scanner with Z-flying Focal Spot[J]. Medical Physics, 2005,32(8):2536-2547.
doi: 10.1118/1.1949787
pmid: 16193784
|