[1] |
GEMBLER F, STAWICKI P, SABOOR A, et al. Dynamic Time Window Mechanism for Time Synchronous VEP-based BCIs—Performance Evaluation with a Dictionary-supported BCI Speller Employing SSVEP and c-VEP[J]. PloS One, 2019,14(6):1-18.
|
[2] |
CHEN X, WANG Y, NAKANISHI M, et al. High-speed Spelling with a Noninvasive Brain-computer Interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(44):E6058-E6067.
doi: 10.1073/pnas.1508080112
pmid: 26483479
|
[3] |
XU M, XIAO X, WANG Y, et al. A Brain-Computer Interface Based on Miniature-event-related Potentials Induced by Very Small Lateral Visual Stimuli[J]. IEEE Transactions on Biomedical Engineering, 2018,65(5):1166-1175.
doi: 10.1109/TBME.2018.2799661
pmid: 29683431
|
[4] |
许强, 李伟, 占荣辉, 等. 一种改进的卷积神经网络SAR目标识别算法[J]. 西安电子科技大学学报, 2018,45(5):177-183.
|
|
XU Qiang, LI Wei, ZHAN Ronghui, et al. Improved Algorithm for SAR Target Recognition Based on the Convolutional Neural Network[J]. Journal of Xidian University, 2018,45(5):177-183.
|
[5] |
CECOTTI H, GRASER A. Convolutional Neural Networks for P300 Detection with Application to Brain-computer Interfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(3):433-445.
pmid: 20567055
|
[6] |
LI J, YU Z L, GU Z, et al. A Hybrid Network for ERP Detection and Analysis Based on Restricted Boltzmann Machine[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018,26(3):563-572.
doi: 10.1109/TNSRE.2018.2803066
pmid: 29522400
|
[7] |
PODMORE J J, BRECKON T P, AZNAN N K N, et al. On the Relative Contribution of Deep Convolutional Neural Networks for SSVEP-based Bio-signal Decoding in BCI Speller Applications[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019,27(4):611-618.
doi: 10.1109/TNSRE.7333
|
[8] |
DORFER M, KELZ R, WIDMER G. Deep Linear Discriminant Analysis[CP/OL]. [2019-11-16].https://arxiv.org/pdf/1511.04707v5.pdf.
|
[9] |
GAO S, WANG Y, GAO X, et al. Visual and Auditory Brain-computer Interfaces[J]. IEEE Transactions on Biomedical Engineering, 2014,61(5):1436-1447.
doi: 10.1109/TBME.2014.2300164
|
[10] |
CHEN J, LI Z, HONG B, et al. A Single-stimulus, Multitarget BCI Based on Retinotopic Mapping of Motion-onset VEPs[J]. IEEE Transactions on Biomedical Engineering, 2019,66(2):464-470.
doi: 10.1109/TBME.2018.2849102
pmid: 29993456
|
[11] |
LIU M, WU W, GU Z, et al. Deep Learning Based on Batch Normalization for P300 Signal Detection[J]. Neurocomputing, 2018,275(1):288-297.
doi: 10.1016/j.neucom.2017.08.039
|
[12] |
朱莉, 赵俊, 傅应锴, 等. 一种红外热图像目标区域分割的深度学习算法[J]. 西安电子科技大学学报, 2019,46(4):1-8.
|
|
ZHU Li, ZHAO Jun, FU Yingkai, et al. Deep Learning Algorithm for the Segmentation of the Interested Region of an Infrared Thermal Image[J]. Journal of Xidian University, 2019,46(4):1-8.
|
[13] |
MA T, LI H, YANG H, et al. The Extraction of Motion-onset VEP BCI Features Based on Deep Learning and Compressed Sensing[J]. Journal of Neuroscience Methods, 2017,100(275):80-92.
|
[14] |
陈瑞. 基于mVEP的脑—机接口关键技术研究[D]. 成都: 电子科技大学, 2015.
|
[15] |
官金安, 汪鹭汐, 赵瑞娟, 等. 基于3D卷积神经网络的IR-BCI脑电视频解码研究[J]. 中南民族大学学报(自然科学版), 2019,38(4):538-546.
|
|
GUAN Jinan, WANG Luxi, ZHAO Ruijuan, et al. Research on IR-BCI EEG Video Decoding Based on 3D Convolutional Neural Network[J]. Journal of South-Central University for Nationalities(Natural Science Edition), 2019,38(4):538-546.
|
[16] |
王斐. 视听觉脑机接口及其临床应用研究[D]. 广州: 华南理工大学, 2017.
|