西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (4): 132-140.doi: 10.19665/j.issn1001-2400.2020.04.018

• • 上一篇    下一篇

MC-DTSVMs的双偏振气象雷达降水粒子分类方法

李海1(),尚金雷1,孙婷逸1,冯青1,庄子波2   

  1. 1.中国民航大学 天津市智能信号与图像处理重点实验室 天津 300300
    2.中国民航大学 飞行技术学院 天津 300300
  • 收稿日期:2019-11-06 出版日期:2020-08-20 发布日期:2020-08-14
  • 作者简介:李 海(1976—),男,教授,博士,E-mail:haili@cauc.edu.cn.
  • 基金资助:
    国家自然科学基金(U1433202);国家自然科学基金(U1733116);工业与信息化部民用飞机专项(MJ-2018-S-28);航空基金(20182067008);中央高校基本科研业务费专项资金(3122018D008);中国民航大学蓝天教学名师培养经费资助课题

Method for hydrometeor classification based on MC-DTSVMs

LI Hai1(),SHANG Jinlei1,SUN Tingyi1,FENG Qing1,ZHUANG Zibo2   

  1. 1. Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China
    2. Flight Technology College, Civil Aviation University of China, Tianjin 300300, China
  • Received:2019-11-06 Online:2020-08-20 Published:2020-08-14

摘要:

为解决双偏振气象雷达偏振参量数据随机缺失情况下的降水粒子分类问题,提出一种矩阵填充-决策树支持向量机多分类器的双偏振气象雷达降水粒子联合分类方法。首先,根据矩阵填充算法对存在随机缺失的偏振参量数据进行重构; 然后,利用训练数据对决策树支持向量机多分类器进行学习;最后,使用学习好的决策树支持向量机多分类器实现对重构数据的降水粒子分类。通过对实测数据的处理及结果分析,证明了该方法能够有效地解决偏振参量数据随机缺失情况下的降水粒子分类问题。

关键词: 双偏振气象雷达, 降水粒子分类, 矩阵填充, 支持向量机, 随机缺失

Abstract:

In order to solve the problem of precipitation particle classification in the case of random missing of polarization parameter data of two-polarization meteorological radar, a method based on matrix completion(MC) and decision tree support vector machine multi-classifier(DTSVMs) is proposed. First, the polarization parameter data with random miss is reconstructed according to the matrix completion algorithm, and then the training data are used to learn the DTSVMs, and finally the precipitation particle classification of the reconstructed data is realized by using the DTSVMs with good learning. By processing the measured data and analyzing the results, it is proven that this method can effectively solve the precipitation particle classification problem in the case of random missing of polarization parameter data.

Key words: dual polarization weather radar, hydrometeor classification, matrix completion, support vector machine, random missing

中图分类号: 

  • TN959.4