西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (4): 141-148.doi: 10.19665/j.issn1001-2400.2020.04.019

• • 上一篇    下一篇

一种双网融合的分阶段烟雾检测算法

杜立召1(),徐岩1,张为2   

  1. 1.天津大学 电气自动化与信息工程学院,天津 300072
    2.天津大学 微电子学院,天津 300072
  • 收稿日期:2020-01-27 出版日期:2020-08-20 发布日期:2020-08-14
  • 作者简介:杜立召(1996—),男,天津大学硕士研究生,E-mail:dulizhao96@163.com.
  • 基金资助:
    应急管理部消防救援局科研计划重点攻关项目(2019XFGG20)

Phased smoke detection algorithm using dual network fusion

DU Lizhao1(),XU Yan1,ZHANG Wei2   

  1. 1. School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China
    2. School of Microelectronics, Tianjin University, Tianjin 300072, China
  • Received:2020-01-27 Online:2020-08-20 Published:2020-08-14

摘要:

现有的视频烟雾检测方法在复杂场景下检测准确率低,不能准确地框定出视频图像中的烟雾区域。针对此问题,提出一种结合烟雾运动过程和目标检测的分阶段烟雾检测算法。首先,基于烟雾颜色特征改进ViBe算法,提取视频中不断运动的烟雾。然后以YOLO v3模型为基础,在主干网络的残差结构中引入通道注意力机制;使用Focal-loss和GIoU改进损失函数。在烟雾图片数据集测试中,改进后的网络单张图片检测时间为38.4ms,mAP达到约92.13 %,相比原模型提高了约2.19 %。在提取烟雾运动的同时,将同一帧送入网络进行检测;以两者的检测结果对烟雾做综合判别。在公开烟雾视频测试中,该算法的检测率平均达到约98.88%。测试表明,算法对复杂场景适应性强,检测效率高,具有较高的实际应用价值。

关键词: 烟雾检测, ViBe算法, YOLO v3, 注意力机制, 深度学习

Abstract:

Existing video smoke detection methods have a low detection accuracy in complex scenes and cannot detect smoke areas in video frames accurately. In this paper, a phased smoke detection algorithm that combines the smoke movement process and the target detection algorithm is proposed. First, an improved ViBe algorithm based on smoke color features is used to extract the continuously moving smoke in video. Then, the YOLO v3 model is used as the target detection network. The channel attention mechanism is added to the residual structure of its backbone network. Focal-loss and GIoU are utilized to improve the loss function. According to the test of the smoke image data set, the detection time of the improved network on a single picture is 38.4ms and the mAP reaches 92.13%, which is 2.19% higher than that by the original model. While extracting smoke motion, the same frame is sent to the improved YOLO v3 for smoke detection. Finally, comprehensive discrimination is made based on the smoke detection results in stages. Public smoke video test results show that the algorithm has an average detection rate of 98.88%, which proves that the algorithm has a strong adaptability, a high detection efficiency in complex scenes and a high practical application value.

Key words: smoke detection, ViBe algorithm, YOLO v3, attention mechanism, deep learning

中图分类号: 

  • TP391