[1] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet Classification with Deep Convolutional Neural Networks[C]// Proceedings of the 2012 25th International Conference on Neural Information Processing Systems: 1. Vancouver: Neural Information Processing Systems Foundation, 2012: 1097-1105.
|
[2] |
张金刚, 方圆, 袁豪, 等. 一种识别表情序列的卷积神经网络[J]. 西安电子科技大学学报, 2018,45(1):150-155.
|
|
ZHANG Jingang, FANG Yuan, YUAN Hao, et al. Multiple Convolutional Neural Networks for Facial Expression Sequence Recognition[J]. Journal of Xidian University, 2018,45(1):150-155.
|
[3] |
朱苏雅, 杜建超, 李云松, 等. 采用U-Net 卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019,6(4 ): 35-42.
|
|
ZHU Suya, Du Jianchao, LI Yunsong, et al. Method for Bridge Crack Detection Based on the U-Net Convolutional Network[J]. Journal of Xidian University, 2019,6(4):35-42.
|
[4] |
刘道华, 崔玉爽, 赵岩松, 等. 一种改进卷积神经网络的教学图像检索方法[J]. 西安电子科技大学学报, 2019(3):52-58.
|
|
LIU Daohua, CUI Yushuang, ZHAO Yansong, et al. Method for Retrieving the Teaching Image Based on the Improved Convolutional Neural Networks[J]. Journal of Xidian University, 2019(3):52-58.
|
[5] |
WU Z, SONG S, KHOSLA A, et al. 3D Shapenets: a Deep Representation for Volumetric Shapes[C]// Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 1912-1920.
|
[6] |
MATURANA D, SCHERER S. Voxnet: A 3D Convolutional Neural Network for Real-time Object Recognition[C]// Proceedings of the 2015 IEEE International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2015: 922-928.
|
[7] |
杨军, 王亦民. 基于深度卷积神经网络的三维模型识别[J]. 重庆邮电大学学报, 2019,31(2):253-260.
|
|
YANG Jun, WANG Yimin. 3D Model Recognition and Classification Based on Deep Convolution Neural Network[J]. Journal of Chongqing University of Posts and Telecommunications, 2019,31(2):253-260.
|
[8] |
杨军, 王顺, 周鹏. 基于深度体素卷积神经网络的三维模型识别分类[J]. 光学学报, 2019,39(4):314-324.
|
|
YANG Jun, WANG Shun, ZHOU Peng. 3D Model Recognition and Classification Based on Deep Voxel Convolution Neural Network[J]. Acta Optica Sinica, 2019,39(4):314-324.
|
[9] |
RIEGLER G, ULUSOY A O, GEIGER A. Octnet: Learning Deep 3D Representations at High Resolutions[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6620-6629.
|
[10] |
SU H, MAJI S, KALOGERAKIS E, et al. Multi-view Convolutional Neural Networks for 3D Shape Recognition[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 945-953.
|
[11] |
FENG Y, ZHANG Z, ZHAO X, et al. GVCNN: Group-view Convolutional Neural Networks for 3D Shape Recognition[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 264-272.
|
[12] |
KALOGERAKIS E, AVERKIOU M, MAJI S, et al. 3D Shape Segmentation with Projective Convolutional Networks[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6630-6639.
|
[13] |
SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-scale Image Recognition[C]// Proceedings of the 2015 3rd International Conference on Learning Representations. San Diego: International Conference on Learning Representations, 2015: 1409-1423.
|
[14] |
HUANG H, KALOGERAKIS E, CHAUDHURI S, et al. Learning Local Shape Descriptors from Part Correspondences with Multi View Convolutional Networks[J]. ACM Transactions on Graphics, 2018,37(1):6-20.
|
[15] |
QI C R, SU H, MO K, et al. Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85.
|
[16] |
QI C R, YI L, SU H, et al. Pointnet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[C]// Proceedings of the 2017 International Conference on Neural Information Processing Systems. Vancouver: Neural Information Processing Systems Foundation, 2017: 5100-5109.
|
[17] |
WANG Y, SUN Y, LIU Z, et al. Dynamic Graph CNN for Learning on Point Clouds[J]. ACM Transactions on Graphics, 2019,38(5):146-160.
|
[18] |
KLOKOV R, LEMPITSKY V. Escape from Cells: Deep Kd-networks for the Recognition of 3D Point Cloud Models[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 863-872.
|
[19] |
LI Y, BU R, SUN M, et al. Pointcnn: Convolution on X-transformed Points[C]// Proceedings of the 2018 International Conference on Neural Information Processing Systems. Vancouver: Neural Information Processing Systems Foundation, 2018: 820-830.
|
[20] |
ZHANG X, ZHOU X, LIN M, et al. Shufflenet: an Extremely Efficient Convolutional Neural Network for Mobile Devices[C]// Proceedings of the 2018 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 6848-6856.
|
[21] |
CHEN C, FRAGONARA L Z, TSOURDOS A. Go Wider: An Efficient Neural Network for Point Cloud Analysis via Group Convolutions[J/OL]. [2019-09-23]. https: //arxiv.org/pdf/1909.10431.pdf.
|
[22] |
LANDOLA F, MOSKEWICZ M, KARAYEV S, et al. Densenet: Implementing Efficient Convnet Descriptor Pyramids[J/OL]. [2014-04-07]. https: //arxiv.org/pdf/1404.1869.pdf.
|
[23] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
|
[24] |
YI L, KIM V, CEYLAN D, et al. A Scalable Active Framework for Region Annotation in 3D Shape Collections[J]. ACM Transactions on Graphics, 2016,35(6):1-12.
|
[25] |
ARMENI I, SENER O, ZAMIR A R, et al. 3D Semantic Parsing of Large-scale Indoor Spaces[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1534-1543.
|
[26] |
ENGELMANN F, KONTOGIANNI T, HERMANS A, et al. Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2017: 716-724.
|