西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (5): 28-39.doi: 10.19665/j.issn1001-2400.2020.05.005
收稿日期:
2020-05-20
出版日期:
2020-10-20
发布日期:
2020-11-06
作者简介:
王慧(1996—),女,北京邮电大学硕士研究生,E-mail: 基金资助:
WANG Hui(),WANG Licheng,BAI Xue,LIU Qinghua,SHEN Xiaoying
Received:
2020-05-20
Online:
2020-10-20
Published:
2020-11-06
摘要:
区块链具有账本去中心化、数据不可篡改、信息公开透明等典型特征,在一定程度上解决了相互不信任的个体之间的协作与价值流转。但是,区块链的公开可验证性为用户隐私带来了安全挑战,同时其性能问题,特别是在交易吞吐量和可扩展性方面,也限制了区块链技术的进一步发展。从区块链的隐私保护和扩容技术两大方面进行了研究和探讨。首先,概述了区块链中的比特币技术和以太坊技术,以及相互之间的对比;然后,介绍了环签名、零知识证明、安全多方计算、同态承诺和子向量承诺等几种典型的面向区块链的隐私保护关键技术和发展现状,从链上、链下两个方面介绍了区块链扩容关键技术和案例分析。突破区块链发展中隐私保护和扩容两大瓶颈,使区块链具备智能合约功能,在保障用户隐私的前提下具有较高的交易吞吐量、可扩展性,满足金融、教育、社会管理、工业物流等广泛领域的实际需要,是区块链未来的发展方向。
中图分类号:
王慧,王励成,柏雪,刘清华,沈晓鹰. 区块链隐私保护和扩容关键技术研究[J]. 西安电子科技大学学报, 2020, 47(5): 28-39.
WANG Hui,WANG Licheng,BAI Xue,LIU Qinghua,SHEN Xiaoying. Research on key technology of blockchain privacy protection and scalability[J]. Journal of Xidian University, 2020, 47(5): 28-39.
表2
区块链平台扩容与隐私保护方案一览表"
区块链系统 | 共识协议 | 扩容方式 | 隐私保护方式 |
---|---|---|---|
比特币 | PoW | 侧链、闪电网络、PeerCensus、Byzcoin、ELASTICO | |
以太坊 | PoW/PoS | Prism、Plasma、TrueBit、zk-Rollup、Piperine、zokrate | zk-SNARKs |
Zerocash | PoW | 侧链、闪电网络 | zk-SNARKs、哈希承诺 |
Bitcoin-NG | PoW | 一次生成多个区块 | |
IOTA | PoW | DAG结构 | IOTA信任模型 |
Algorand | PoS+BFT | 混合共识协议 | |
Omniledger | PoS+PBFT | 分片 | |
Rapidchain | PoS+BFT | 分片 | |
Monoxide | PoW | 分片 | |
Coda | PoS | 零知识证明递归压缩 | zk-SNARKs |
[1] | NAKAMOTO S. Bitcoin: a Peer-to-peer Electronic Cash System[EB/OL]. [2020-04-26]. https://bitcoin.org/bitcoin.pdf. |
[2] | BUTERIN V. A Next-generation Smart Contract and Decentralized Application Platform[EB/OL]. [2020-04-26]. http://www.fintech.academy/wp-content/uploads/2016/06/EthereumWhitePaper.pdf. |
[3] |
GRIGGS K N, OSSIPOVA O, KOHLIOS C P, et al. Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring[J]. Journal of Medical Systems, 2018,42(7):130-138.
doi: 10.1007/s10916-018-0982-x pmid: 29876661 |
[4] | Libra. Libra White Paper[EB/OL].[2020-04-26]. https://libra.org/en-US/white-paper/. |
[5] | 蒋照生, 孙宇林, 王瑞娇. 等. 人民币3.0----中国央行数字货币:运行框架与技术解析[EB/OL]. [2020-04-26]. http://www.huanjing100.com/p-10034.html. |
[6] | MEIKLEJOHN S, POMAROLE M, JORDAN G, et al. A Fistful of Bitcoins: Characterizing Payments Among Men with No Names [C]//Proceedings of the 20133 ACM SIGCOMM Internet Measurement Conference. New York: ACM, 2013: 127-139. |
[7] | NOETHER S. Ring ConfidentialTransactions[J/OL]. [2020-04-26].https://eprint.iacr.org/2015/1098.pdf. |
[8] | BEN-SASSON E, CHIESA A, GARMAN C, et al. Zerocash: Decentralized Anonymous Payments from Bitcoin [C]//Proceedings of the 2014 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2014: 459-0474. |
[9] | SWAN M. Blockchain: Blueprint for a New Economy[M/OL]. [2020-04-26]. http://donkasprzak.com/blockchain-blueprint/. |
[10] | TULLOH B. Smart Contracts[EB/OL]. [2020-04-26]. http://www.erights.org/smart-contracts/index.html. |
[11] | MILLER M S, STIEGLER M. The Digital Path: Smart Contracts and the Third World[EB/OL]. [2020-04-26]. http://www.erights.org/talks/pisa/paper/. |
[12] | Etherscan. Ethereum Blockchain Explorer[EB/OL].[2020-04-26]. https://cn.etherscan.com/. |
[13] | GRIGG I. EOS-An introduction[EB/OL]. [2020-04-26]. https://iang.org/papers/EOS_An_Introduction.pdf. |
[14] | CASTRO M, LISKOV B. Practical Byzantine Fault Tolerance and Proactive Recovery[J]. ACM Transactions on Computer Systems, 2002,20(4):398-0461. |
[15] | RIVEST R L, SHAMIR A, TAUMAN Y. How to Leak a Secret [C]//Lecture Notes in Computer Science: 2248. Heidelberg: Springer Verlag, 2001: 552-565. |
[16] | LIU J K, WEI, V K, WONG D S. Linkable Spontaneous Anonymous Group Signature for Ad Hoc Groups [C]//Lecture Notes in Computer Science: 3108. Heidelberg: Springer Verlag, 2004: 325-335. |
[17] | BACK A. Ring Signature Efficiency[C/OL]. [2020-04-26].https://bitcointalk.org/index.php. |
[18] | FUJISAKI E, SUZUKI K. Traceable Ring Signature [C]//Lecture Notes in Computer Science: 4450. Heidelberg: Springer Verlag, 2007: 181-200. |
[19] | VAN SABERHAGEN N. Cryptonote V 2.0.[EB/OL]. [2020-04-26]. https://www.mendeley.com/catalogue/7e4cdb00-7955-30e1-9185-32a1801bd94b/. |
[20] | SUN S F, AU M H, LIU J K, et al. Ringct 2.0: a Compact Accumulator-based (Linkable Ring Signature) Protocol for Blockchain Cryptocurrency Monero [C]//Lecture Notes in Computer Science: 10493. Heidelberg: Springer Verlag, 2017: 456-474. |
[21] | YUEN T H, SUN S F, LIU J K, et al. Ringct 3.0 for Blockchain Confidential Transaction: Shorter Size and Stronger Security [C]//Lecture Notes in Computer Science: 12059. Heidelberg: Springer, 2020: 464-483. |
[22] |
LI Y, YANG G, SUSILO W, et al. Traceable Monero: Anonymous Cryptocurrency with Enhanced Accountability[J]. IEEE Transactions on Dependable and Secure Computing , 2019, DOI: 10.1109/TDSC.2019.2910058.
doi: 10.1109/TDSC.2012.11 pmid: 24489520 |
[23] | WANG L, SHEN X, LI J, et al. Cryptographic Primitives in Blockchains[J]. Journal of Network and Computer Applications, 2019,127:43-58. |
[24] | TSANG P P, WEI V K. Short Linkable Ring Signatures for E-voting, E-cash and Attestation [C]//Lecture Notes in Computer Science: 3439. Heidelberg: Springer Verlag, 2005: 48-60. |
[25] | AU M H, CHOW S S M, SUSILO W, et al. Short Linkable Ring Signatures Revisited[C]//Lecture Notes in Computer Science: 4043. Heidelberg: Springer Verlag, 2006: 101-115. |
[26] | AU M H, LIU J K, SUSILO W, et al. Secure Id-based Linkable and Revocable-iff-linked Ring Signature with Constant-size Construction[J]. Theoretical Computer Science, 2013,469:1-14. |
[27] | MAXWELL G, POELSTRA A. Borromean Ring Signatures[EB/OL]. [2020-04-26]. http://diyhpl.us/~bryan/papers2/bitcoin/Borromean%20ring%20signatures.pdf. |
[28] | BLUM M, FELDMAN P, MICALI S. Non-Interactive Zero-Knowledge and Its Applications [C]//Proceedings of the 1988 Annual ACM Symposium on Theory of Computing. New York: ACM, 1988: 103-112. |
[29] | BEN-SASSON E, CHIESA A, TROMER E, et al. Succinct Non-interactive Zero Knowledge for a Von Neumann Architecture [C]//Proceedings of the 2014 23rd USENIX Security Symposium. Berkeley: USENIX Association, 2014: 781-796. |
[30] | BEN-SASSON E, CHIESA A, GREEN M, et al. Secure Sampling of Public Parameters for Succinct Zero Knowledge Proofs [C]//Proceedings of the 2015 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2015: 287-304 |
[31] | BEN-SASSON E, BENTOV L, HORESH Y, et al. Scalable Zero Knowledge with No Trusted Setup [C]//Lecture Notes in Computer Science: 11694. Heidelberg: Springer Verlag, 2019: 701-732. |
[32] | Suterusu. Suterusu Yellowpaper (V 0.2)[EB/OL]. [2020-04-26]. https://www.suterusu.io/#pwa__technology. |
[33] | BUNZ B, BOOTLE J, BONEH D, et al. Bulletproofs: Short Proofs for Confidential Transactions and More [C]//Proceedings of the 2018 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2018: 315-334 |
[34] | DAMGARD I, NIELSEN J, POLYCHRONIADOU A, et al. On the Communication Required for Unconditionally Secure Multiplication [C]//Lecture Notes in Computer Science: 9815. Heidelberg: Springer Verlag, 2016: 459-488. |
[35] | ZHOU L, WANG L, SUN Y, et al. AntNest: Fully Non-Interactive Secure Multi-Party Computation[J]. IEEE Access, 2018,6:75639-75649. |
[36] | BENHAMOUDA F, HALEVI S, HALEVI T. Supporting Private Data on Hyperledger Fabric with Secure Multiparty Computation [C]//Proceedings of the 2018 IEEE International Conference on Cloud Engineering. Piscataway: IEEE, 2018: 357-363. |
[37] | PEDERSEN T P. Non-interactive and Information-theoretic Secure Verifiable Secret Sharing [C]//Lecture Notes in Computer Science: 576. Heidelberg: Springer Verlag, 1992: 129-140. |
[38] | BUNZ B, BOOTLE J, BONEH D, et al. Bulletproofs: Efficient Range Proofs for Confidential Transactions[C/OL]. [2020-04-26].https://eprint.iacr.org/2017/1066.pdf. |
[39] | NARULA N, VASQUEZ W, VIRZA M. Privacy-preserving Auditing for Distributed Ledgers [C]// Proceedings of the 2018 15th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2018: 65-80. |
[40] | CATALANO D, FIORE D. Vector Commitments and Their Applications [C]//Lecture Notes in Computer Science: 7778. Heidelberg: Springer Verlag, 2013: 55-72. |
[41] | LAI R W F, MALAVOLTA G. Subvector Commitments with Application to Succinct Arguments [C]//Lecture Notes in Computer Science: 11692. Heidelberg: Springer Verlag, 2019: 530-560. |
[42] | EYAL I, GENCER A E, SIRER E G, et al. Bitcoin-NG: a Scalable Blockchain Protocol [C]//Proceedings of the 2016 13th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2016: 45-59. |
[43] | GILAD Y, HEMO R, MICALI S, et al. Algorand: Scaling Byzantine Agreements for Cryptocurrencies [C]//Proceedings of the 2017 26th Symposium on Operating Systems Principles. New York: ACM, 2017: 51-68. |
[44] | DECKER C, SEIDEL J, WATTENHOFER R. Bitcoin Meets Strong Consistency [C]//Proceedings of the 2016 17th International Conference on Distributed Computing and Networking. New York: ACM, 2016: a13. |
[45] | ABRAHAM I, MALKHI D, NAYAK K, et al. Solida: a Blockchain Protocol Based on Reconfigurable Byzantine Consensus[CP/OL]. [2020-04-26].https://arxiv.org/pdf/1612.02916.pdf. |
[46] | KOKORIS-KOGIAS E, JOVANOVIC P, GAILLY N, et al. Enhancing Bitcoin Security and Performance with Strong Consistency Via Collective Signing [C]//Proceedings of the 2016 25th USENIX Security Symposium. Berkeley: USENIX Association, 2016: 279-296. |
[47] | LUU L, NARAYANAN V, ZHENG C, et al. A Secure Sharding Protocol for Open Blockchains [C]// Proceedings of the 2016 ACM Conference on Computer and Communications Security. New York: ACM, 2016: 17-30. |
[48] | KOKORIS-KOGIAS E, JOVANOVIC P, GASSER L, et al. OmniLedger: a Secure, Scale-out, Decentralized Ledger via Sharding [C]//Proceedings of the 2018 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2018: 583-598. |
[49] | ZAMANI M, MOVAHEDI M, RAYKOVA M. RapidChain: Scaling Blockchain Via Full Sharding [C]//Proceedings of the 2018 ACM Conference on Computer and Communications Security. New York: ACM, 2018: 931-948. |
[50] | WANG J, WANG H. Monoxide: Scale out Blockchains with Asynchronous Consensus Zones [C]// Proceedings of the 2019 16th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2019: 95-112. |
[51] | MCELHANEY J W. The Tangle[J]. Aba Journal, 2004,90(5):26-27. |
[52] | YANG L, BAGARIA V, WANG G, et al. Prism: Scaling Bitcoin by 10,000x[J/OL]. [2020-04-23].https://arxiv.org/pdf/1909.11261.pdf. |
[53] | POON J, BUTERIN V. Plasma: Scalable Autonomous Smart Contracts[J/OL]. [2020-04-23].https://plasma.io/plasma.pdf. |
[54] | JASON T, CHRISTIAN R. A Scalable Verification Solution for Blockchains[J/OL]. [2020-04-23]. https: //arxiv.org/pdf/1908.04756.pdf. |
[55] | WHITEHAT B, GLUCHOWSKI A, HARRY R, et al. Roll_up / roll_back snark side chain ~17000tps. [EB/OL].[2020-04-23].https://ethresear.ch/t/roll-up-roll-backsnark-side-chain-17000-tps/3675. |
[56] | BONNEAU J, MECKLER I, RAO V, et al. Coda: Decentralized Cryptocurrency at Scale[J/OL]. [2020-04-29]. https://eprint.iacr.org/2020/352.pdf. |
[57] | LEE J, NIKITIN K, SETTY S. Replicated State Machines without Replicated Execution[C/OL]. [2020-04-29].https://nikirill.com/files/piperine.pdf. |
[58] | EBERHARDT J, TAI S. ZoKrates - Scalable Privacy-Preserving Off-Chain Computations[C/OL]. [2020-04-29].https://ieeexplore.ieee.org/document/8726497. |
[59] | DRYJA T. Utreexo: A Dynamic Hash-based Accumulator Optimized for the Bitcoin UTXO Set[J/OL]. [2020-04-29]. https://eprint.iacr.org/2019/611.pdf. |
[1] | 杨颜博,张嘉伟,马建峰. 一种使用区块链保护车联网数据隐私的方法[J]. 西安电子科技大学学报, 2021, 48(3): 21-30. |
[2] | 郑献春,李晖,王瑞,闫皓楠,戴睿,萧明炽. 匿名网络应用及仿真平台研究综述[J]. 西安电子科技大学学报, 2021, 48(1): 22-38. |
[3] | 李金泽,王中豪,李孟恒,覃团发. 一种划分小区域的区块链频谱共享管理方法[J]. 西安电子科技大学学报, 2020, 47(6): 122-130. |
[4] | 翟社平,汪一景,陈思吉. 区块链技术在电子病历共享的应用研究[J]. 西安电子科技大学学报, 2020, 47(5): 103-112. |
[5] | 张颖浩,刘肖凡. 卫星广播网络环境下区块链协议的初步研究[J]. 西安电子科技大学学报, 2020, 47(5): 11-18. |
[6] | 李涵,张晨,黄荷姣,郭宇. 一种支持前向安全更新和验证的加密搜索算法[J]. 西安电子科技大学学报, 2020, 47(5): 48-56. |
[7] | 丁勇,相恒奎,罗得寸,邹秀清,梁海. 一种结合Fabric技术的电子存证方案[J]. 西安电子科技大学学报, 2020, 47(5): 113-121. |
[8] | 赵子军,应作斌,杨钊,刘西蒙,马建峰. 结合区块链和车辆社交网络的车队成员推荐[J]. 西安电子科技大学学报, 2020, 47(5): 122-129. |
[9] | 司成祥,高峰,祝烈煌,巩国鹏,张璨,陈卓,李锐光. 一种支持动态标签的区块链数据隐蔽传输机制[J]. 西安电子科技大学学报, 2020, 47(5): 94-102. |
[10] | 蓝怡琴,张方国,田海博. 利用门罗币实现隐蔽通信[J]. 西安电子科技大学学报, 2020, 47(5): 19-27. |
[11] | 王家恒,乐煜炜,张博文,郭瑞伟,高征,王子悦,凌昕彤. 区块链无线接入网:面向未来移动通信的新架构[J]. 西安电子科技大学学报, 2020, 47(5): 3-10. |
[12] | 田海博,林会智,罗裴然,苏吟雪. 一种用户隐私保护数字货币的可监管方案[J]. 西安电子科技大学学报, 2020, 47(5): 40-47. |
[13] | 刘乃安,陈智浩,刘国堃,李洋. 一种面向区块链验证节点的声誉证明共识机制[J]. 西安电子科技大学学报, 2020, 47(5): 57-62. |
[14] | 马诗洋,董学文,权义宁,佟威,杨凌霄. 区块链共识窗口下Web服务兼容性评价方法[J]. 西安电子科技大学学报, 2020, 47(5): 63-69. |
[15] | 谢奕希,吉立新. 一种区块链驱动的生物启发式威胁检测方法[J]. 西安电子科技大学学报, 2020, 47(5): 70-76. |
|