西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (6): 148-157.doi: 10.19665/j.issn1001-2400.2020.06.021

• 信息与通信工程 & 网络空间安全 • 上一篇    下一篇

一种添加残差注意力机制的视觉目标跟踪算法

成磊(),王玥,田春娜()   

  1. 西安电子科技大学 电子工程学院,陕西 西安 710071
  • 收稿日期:2019-12-10 出版日期:2020-12-20 发布日期:2021-01-06
  • 作者简介:成 磊(1993—),男,西安电子科技大学硕士研究生,E-mail: lcheng_123@163.com
  • 基金资助:
    国家自然科学基金项目(61571354)

Residual attention mechanism for visual tracking

CHENG Lei(),WANG Yue,TIAN Chunna()   

  1. School of Electronic Engineering,Xidian University, Xi’an 710071, China
  • Received:2019-12-10 Online:2020-12-20 Published:2021-01-06

摘要:

由于传统的卷积神经网结构不能有效地发挥其强大的特征学习和特征表达能力,故提出一种改良的特征提取网络用于视频目标跟踪。在传统特征提取网络的基础上,引入残差网络形式的注意力机制和特征融合策略,同时在网络模型的训练阶段引入基于区域重叠率的损失函数,使得算法模型获得更好的定位效果。实验结果表明,改进算法可以长时间准确地跟踪目标,并且该方法具有泛化能力,对其他基于深度学习的跟踪算法有借鉴意义。

关键词: 注意力机制, 卷积神经网络, 残差网络, 目标跟踪

Abstract:

In recent years, with the development of training data and hardware, a large number of tracking algorithms based on deep learning have been proposed. Compared with the traditional tracking algorithm, tracking algorithms based on deep learning have a great developing potential. However, the traditional convolutional neural network structure cannot effectively perform its powerful feature learning and representation abilities in a tracking task. In this paper, an improved feature extraction network is proposed for video target tracking. Based on the traditional feature extraction network, an attention mechanism and a feature fusion strategy in the form of residual network are introduced. At the same time, a loss function based on the regional overlap rate is introduced in the training stage of the network model, which makes the algorithm produce a better positioning effect. Experimental results show that the improved algorithm can track the target accurately for a long time. Besides, the method has a generalization ability, which can be used for reference for other tracking algorithms based on deep learning.

Key words: attention mechanism, convolutional neural network, residual network, object tracking

中图分类号: 

  • TP39