西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (1): 22-38.doi: 10.19665/j.issn1001-2400.2021.01.004
郑献春(),李晖(),王瑞(),闫皓楠(),戴睿(),萧明炽()
收稿日期:
2020-08-11
出版日期:
2021-02-20
发布日期:
2021-02-03
作者简介:
郑献春(1984—),男,西安电子科技大学博士研究生,E-mail: 基金资助:
ZHENG Xianchun(),LI Hui(),WANG Rui(),YAN Haonan(),DAI Rui(),XIAO Mingchi()
Received:
2020-08-11
Online:
2021-02-20
Published:
2021-02-03
摘要:
匿名网络可以隐匿用户和服务提供者的真实身份及位置信息。随着网络空间的日益扩大以及用户对于隐私保护重视程度的提高,匿名网络的研究得到了进一步发展。鉴于目前缺乏匿名网络的应用总结,特别是缺少对于匿名网络仿真平台研究的相关综述,因此结合当前匿名网络的研究现状,对已有的隐私保护匿名技术和匿名网络实际应用的典型代表从多个维度进行了归纳,总结了现有仿真平台和实验环境的优劣势,从可用性、工作效率、真实性、可控规模等方面介绍了相关工作。最后对未来匿名网络的应用研究进行展望,为新的研究内容和趋势提供思路。
中图分类号:
郑献春,李晖,王瑞,闫皓楠,戴睿,萧明炽. 匿名网络应用及仿真平台研究综述[J]. 西安电子科技大学学报, 2021, 48(1): 22-38.
ZHENG Xianchun,LI Hui,WANG Rui,YAN Haonan,DAI Rui,XIAO Mingchi. Survey of anonymous network applications and simulation platforms[J]. Journal of Xidian University, 2021, 48(1): 22-38.
表1
针对Tor网络安全性研究的统计结果"
研究方向 | 攻击方式 | 防御方案 |
---|---|---|
链路攻击 | 网络审查[ BGP攻击[ | 审查避免[ |
路径选择算法[ | ||
路径选择攻击[ | ||
增强稳定性和安全性 | ||
网桥攻击[ | ||
流量分析 | 网桥发现攻击[ | |
重放攻击[ | 数据挖掘、可信机制 | |
中间人攻击[ | ||
流量关联攻击[ | 利用网络测量执行路径预测、智能中继选择[ | |
网站指纹攻击 | 基于网站特征[ | 修改浏览器以半双工模式工作[ |
基于网站缓存[ | 缓存屏蔽技术 | |
侧信道攻击[ | ||
其他攻击 | 拒绝服务攻击[ | 隐私信息保护、负载测量与均衡技术 |
信息泄露[ |
表2
五种实验平台的优缺点对比"
实验途径 | 典型应用代表 | 优 点 | 缺 点 |
---|---|---|---|
真实网络中实验 | 真实的Tor网络 | 小规模实验的门槛较低,真实度高 | 整体不可控,大规模实验的成本高,危害影响范围广 |
大型网络测试床 | PlanetLab[ | 根据实验需要申请资源,拥有一定程度上的全局视角 | 损失了部分真实度,时间范围和规模有限 |
模拟实验 | ExperamenTor[ | 全局控制度较高,实验部署成本较低 | 不再更新,目前没有可使用的版本 |
仿真试验 | TorPs[ | 仅适用于提高或者改变链路选择算法的相关实验 | 无法满足流量分析、安全性测试等实验的要求 |
半仿真半模拟 | Shadow[ | 接管了底层并实现了一个复杂的实验网络,全局性和真实性较高 | 改造成本较高,且改造效果直接影响实验效率和结果 |
[1] | WEBER J, KRUISBERGEN E W. Criminal Markets:the Dark Web,Money Laundering and Counterstrategies-an Overview of the 10th Research Conference on Organized Crime[J]. Trends in Organized Crime, 2019,22(3):346-356. |
[2] | GEHL R W. Weaving the Dark Web:Legitimacy on Freenet,Tor,and I2P[M]. Cambridge: MIT Press, 2018. |
[3] | 于世梁. 国外打击涉“暗网”犯罪的经验及启示[J]. 河南警察学院学报, 2019,28(4):5-11. |
YU Shiliang. Lessons of Policing the Dark Web for China[J]. Journal of Henan Police College, 2019,28(4):5-11. | |
[4] | 明乐齐. 暗网犯罪的趋势分析与治理对策[J]. 犯罪研究, 2019,( 4):65-76. |
MING Leqi. Trend Analysis and Countermeasures of Covert Network Crime[J]. Chinese Criminology Review, 2019,( 4):65-76. | |
[5] | 吕博, 廖勇, 谢海永. Tor 匿名网络攻击技术综述[J]. 中国电子科学研究院学报, 2017,12(1):14-19. |
LU Bo, LIAO Yong, Xie Haiyong. Survey on Attack Technologies to Tor Anonymous Network[J]. Journal of CAEIT, 2017,12(1):14-19. | |
[6] | 刘鑫, 王能. 匿名通信综述[J]. 计算机应用, 2010,30(3):719-722. |
LIU Xin, WANG Neng. Survey of Anonymity Communication[J]. Journal of Computer Applications, 2010,30(3):719-722. | |
[7] | 罗军舟, 杨明, 凌振, 等. 匿名通信与暗网研究综述[J]. 计算机研究与发展, 2019,56(1):103-130. |
LUO Junzhou, YANG Ming, LING Zhen, et al. Anonymous Communication and Darknet:a Survey[J]. Journal of Computer Research and Development, 2019,56(1):103-130. | |
[8] | FINKLEA K. Dark Web:CRS Report R 44101[R/OL].[2020-07-26].https://fas.org/sgp/crs/misc/R44101.pdf. |
[9] | 赵旭辉.管窥暗网: 揭开章莹颖案背后的神秘面纱[J]. 武汉公安干部学院学报, 2019,( 3):67-70. |
ZHAO Xuhui. Peeking through the Dark Web:Uncovering the Mystery behind the Zhang Yingying Case[J]. Journal of Wuhan Public Security Cadre's College, 2019,( 3):67-70. | |
[10] | 郭航. 警惕暗网欺诈和个人信息违法交易[J]. 中国金融家, 2019,( 8):126-127. |
GUO Hang. Beware of Dark Web Fraud and Illegal Trading of Personal Information[J]. China Financialyst, 2019,( 8):126-127. | |
[11] | 贾凌宇. Tor 匿名流量分析关键技术的研究与实现[D]. 哈尔滨:哈尔滨工业大学, 2017. |
[12] | 倪俊. 从社会治理角度认知暗网的威胁与应对[J]. 信息安全与通信保密, 2017,( 11):88-93. |
NI Jun. Understanding Threats of the Dark Web and Corresponding Solutions from the Perspective of Social Governance[J]. Information Security and Communications Privacy, 2017,( 11):88-93. | |
[13] | 王继林, 伍前红, 陈德人, 等. 匿名技术的研究进展[J]. 通信学报, 2005,26(2):112-118. |
WANG Jilin, WU Qianhong, CHEN Deren, et al. A Survey on the Technology of Anonymity[J]. Journal on Communications, 2005,26(2):112-118. | |
[14] | 裘玥. 匿名网络的安全监管隐患与信息获取技术研究[J]. 信息网络安全, 2015,15(9):106-108. |
QIU Yue. Research on the Hidden Web Technology for the Network Content Security[J]. Netinfo Security, 2015,15(9):106-108. | |
[15] | CHAUM D L.Untraceable Electronic Mail,Return Addresses,and Digital Pseudonyms[J]. Communications of the ACM, 1981,24(2):84-88. |
[16] | MOLLER U, COTTRELL L, PALFRADER P, et al. Mixmaster Protocol Version 2[EB/OL].[2020-07-26].https://tools.ietf.org/html/draft-sassaman-mixmaster-00. |
[17] | 陆天波, 程晓明, 张冰. MIX 匿名通信技术研究[J]. 通信学报, 2007,28(12):108-115. |
LU Tianbo, CHENG Xiaoming, ZHANG Bing. Research on MIX-based Anonymous Communications[J]. Journal on Communications, 2007,28(12):108-115. | |
[18] | CHAUM D. The Dining Cryptographers Problem:Unconditional Sender and Recipient Untraceability[J]. Journal of Cryptology, 1988,1(1):65-75. |
[19] | GOLDBERG I, SHOSTACK A. Freedom Network 1.0 Architecture and Protocols[EB/OL].[2020-07-26].https://adam.shostack.org/zeroknowledgewhitepapers/arch-tech.pdf. |
[20] | 任帅, 慕德俊, 张弢, 等. 基于可信计算的 P2P 匿名通信系统[J]. 计算机测量与控制, 2009,17(5):965-966. |
REN Shuai, MU Dejun, ZHANG Tao, et al. Peer-to-Peer Anonymous Communication Network Based on Trusted Computing[J]. Computer Measurement & Control, 2009,17(5):965-966. | |
[21] | 莫家庆, 胡忠望, 林瑜华. 基于可信计算的匿名通信系统方案研究[J]. 计算机应用与软件, 2016,33(12):84-88. |
MO Jiaqing, HU Zhongwang, LIN Yuhua. Research on Trust Computing-based Anonymous Communication System Scheme[J]. Computer Applications and Software, 2016,33(12):84-88. | |
[22] | 徐静, 王振兴. 秘密共享的抗攻击匿名通信系统[J]. 计算机工程与应用, 2010,46(6):82-85. |
XU Jing, WANG Zhenxing. Secret Sharing Anti-attack Anonymous Communication System[J]. Computer Engineering and Applications, 2010,46(6):82-85. | |
[23] | ALEXOPOULOS N, KIAYIAS A, TALVISTE R, et al. MCMix:Anonymous Messaging Via Secure Multiparty Computation [C]//Proceedings of the 2017 26th USENIX Security Symposium.Berkeley:USENIX Association, 2017: 1217-1234. |
[24] | BOGDANOV D. Sharemind:Programmable Secure Computations with Practical Applications[D]. Tartu:University of Tartu, 2013. |
[25] | 周彦伟, 吴振强, 杨波. 多样化的可控匿名通信系统[J]. 通信学报, 2015,36(6):109-119. |
ZHOU Yanwei, WU Zhenqiang, YANG Bo. Diversity of Controllable Anonymous Communication System[J]. Journal on Communications, 2015,36(6):109-119. | |
[26] | PIOTROWSKA A M, HAYES J, ELAHI T, et al. The Loopix Anonymity System [C]//Proceedings of the 2017 26th Security Symposium.Berkeley:USENIX Association, 2017: 1199-1216. |
[27] | GRUBE T, THUMMERER M, DAUBERT J, et al. Cover Traffic:a Trade of Anonymity and Efficiency [C]//Lecture Notes in Computer Science:10547.Heidelberg:Springer Verlag, 2017: 213-223. |
[28] | CHEN C, ASONI D E, PERRIG A, et al. TARANET:Traffic-analysis Resistant Anonymity at the Network Layer [C]//Proceedings of the 2018 3rd IEEE European Symposium on Security and Privacy.Piscataway:IEEE, 2018: 37-152. |
[29] | CHEN C. Infrastructure-based Anonymous Communication Protocols in Future Internet Architectures[D]. Pittsburgh:Carnegie Mellon University, 2018. |
[30] | JANSEN R, JUAREZ M, GALVEZ R, et al. Inside Job:Applying Traffic Analysis to Measure Tor from Within[C/OL].[2020-07-26].https://www.robgjansen.com/publications/insidejob-ndss2018.pdf. |
[31] | WAILS R, JOHNSON A, STARIN D, et al. Stormy:Statistics in Tor by Measuring Securely [C]//Proceedings of the 2019 ACM Conference on Computer and Communications Security.New York:ACM, 2019: 615-632. |
[32] | MANI A, SHERR M. HisTorε:Differentially Private and Robust Statistics Collection for Tor[C/OL].[2020-07-26].2017 Network?and?Distributed System Security Symposium (NDSS),The Internet Society. |
[33] | ELAHI T, DANEZIS G, GLODBERG I. Privex:Private Collection of Traffic Statistics for Anonymous Communication Networks [C]//Proceedings of the 2014 ACM Conference on Computer and Communications Security.New York:ACM, 2014: 1068-1079. |
[34] | JANSEN R, JOHNSON A. Safely Measuring Tor [C]//Proceedings of the 2016 ACM Conference on Computer and Communications Security.New York:ACM, 2016: 1553-1567. |
[35] | JANSEN R, TRAUDT M, HOPPER N. Privacy-preserving Dynamic Learning of Tor Network Traffic [C]//Proceedings of the 2018 ACM Conference on Computer and Communications Security.New York:ACM, 2018: 1944-1961. |
[36] | MELIS L, DANEZIS G, DE CRISTOFARO E.Efficient Private Statistics with Succinct Sketches[C/OL].[ 2020- 07- 26]. http://damonmccoy.com/papers/tor-differential.NDSS16.pdf. |
[37] | KHATTAK S, FIFIELD D, AFROZ S, et al.Do You See what I See? Differential Treatment of Anonymous Users[C/OL].[ 2020- 07- 26]. http://damonmccoy.com/papers/tor-differential.NDSS16.pdf. |
[38] | SINGH R, NITHYANAND R, AFROZ S, et al. Characterizing the Nature and Dynamics of Tor Exit Blocking [C]//Proceedings of the 2017 26th USENIX Security Symposium.Berkeley:USENIX Association, 2017: 325-341. |
[39] | YANG Y, YANG L, YANG M, et al. Dark Web Threat Intelligence and Market Analysis [C]//Proceedings of 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference.Piscataway:IEEE, 2019: 1216-1220. |
[40] | 李超, 周瑛, 魏星. 基于暗网的反恐情报分析研究[J]. 情报杂志, 2018,37(6):10-19. |
LI Chao, ZHOU Ying, WEI Xing. Research on Analysis of Counter-terrorism Intelligence Based on Dark Web[J]. Journal of Intelligence, 2018,37(6):10-19. | |
[41] | 陈璐. 暗网犯罪与多元治理:挑战与出路[J]. 铁道警察学院学报, 2019,29(1):83-90. |
CHEN Lu. Darknet Crime and Pluralistic Governance:Challenges and Solutions[J]. Journal of Railway Police College, 2019,29(1):83-90. | |
[42] | SCHUCHARD M, GEDDES J, THOMPSON C, et al. Routing Around Decoys [C]//Proceedings of the 2012 ACM Conference on Computer and Communications Security.New York:ACM, 2012: 85-96. |
[43] | SUN Y, EDMUNDSON A, VANBEVER L, et al. Raptor:Routing Attacks on Privacy in Tor [C]//Proceedings of the 2015 24th USENIX Security Symposium.Berkeley:USENIX Association, 2015: 271-286. |
[44] | LI Z, HERWIG S, LEVIN D. Detor:Provably Avoiding Geographic Regions in Tor [C]//Proceedings of the 2017 26th USENIX Security Symposium.Berkeley:USENIX Association, 2017: 343-359. |
[45] | KOHLS K, JANSEN K, RUPPRECHT D, et al. On the Challenges of Geographical Avoidance for Tor[C/OL].[2020-07-26].https://www.ndss-symposium.org/ndss-paper/on-the-challenges-of-geographical-avoidance-for-tor/. |
[46] | SUN Y, EDMUNDSON A, FEAMSTER N, et al. Counter-RAPTOR:Safeguarding Tor Against Active Routing Attacks [C]//Proceedings of the 2017 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2017: 977-992. |
[47] | JOHNSON A, JANSEN R, JAGGARD A D, et al. Avoiding the Man on the Wire:Improving Tor's Security with Trust-aware Path Selection[J/OL].[2020-07-28].https://arxiv.org/pdf/1511.05453.pdf. |
[48] | SINGH A. POSTER:Improving Anonymity of Services Deployed Over Tor by Changing Guard Selection [C]//Proceedings of the 2017 ACM Conference on Computer and Communications Security.New York:ACM, 2017: 2579-2581. |
[49] | MATIC S, TRONCOSO C, CABALLERO J. Dissecting Tor Bridges:a Security Evaluation of Their Private and Public Infrastructures[C/OL].[2020-07-26].ttps://air.unimi.it/handle/2434/466611. |
[50] | NASR M, FARHANG S, HOUMANSADR A, et al. Enemy at the Gateways:Censorship-Resilient Proxy Distribution Using Game Theory[C/OL].[2020-07-26].https://www.ndss-symposium.org/ndss-paper/enemy-at-the-gateways-censorship-resilient-proxy-distribution-using-game-theory/. |
[51] | BARTON A, IMANI M, MING J, et al. Towards Predicting Efficient and Anonymous Tor Circuits [C]//Proceedings of the 2018 27th USENIX Security Symposium.Berkeley:USENIX Association, 2018: 429-444. |
[52] | GRESCHBACH B, PULLS T, ROBERTS L M, et al. The Effect of DNS on Tor's Anonymity[C/OL].[2020-07-26].https://arxiv.org/abs/1609.08187. |
[53] | NASR M, BAHRAMALI A, HOUMANSADR A. DeepCorr:Strong Flow Correlation Aacks on Tor Using Deep Learning [C]//Proceedings of the 2018 ACM Conference on Computer and Communications Security.New York:ACM, 2018: 1962-1976. |
[54] | NITHYANAND R, STAROV O, ZAIR A, et al. Measuring and Mitigating AS-level Adversaries against Tor[J/OL].[2020-07-29].https://arxiv.org/pdf/1505.05173.pdf. |
[55] | WANG T, GOLDBERG I. On Realistically Attacking Tor with Website Fingerprinting[J]. Proceedings on Privacy Enhancing Technologies, 2016,2016(4):21-36. |
[56] | CAI X, ZHANG X C, JOSHI B, et al. Touching from a Distance:Website Fingerprinting Attacks and Defenses [C]//Proceedings of the 2012 ACM Conference on Computer and Communications Security.New York:ACM, 2012: 605-616. |
[57] | WANG T, GOLDBERG I. Improved Website Fingerprinting on Tor [C]//Proceedings of the 2013 ACM Conference on Computer and Communications Security.New York:ACM, 2013: 201-212. |
[58] | YAN J, KAUR J. Feature Selection for Website Fingerprinting[J]. Proceedings on Privacy Enhancing Technologies, 2018,2018(4):200-219. |
[59] | HAYES J, DANEZIS G. K-fingerprinting:a Robust Scalable Website Fingerprinting Technique [C]//Proceedings of the 2016 25th USENIX Security Symposium.Berkeley:USENIX Association, 2016: 1187-1203. |
[60] | PANCHENKO A, LANZE F, PENNEKAMP J, et al. Website Fingerprinting at Internet Scale[C/OL].[2020-07-26].https://orbilu.uni.lu/handle/10993/24117. |
[61] | WANG T, GOLDBERG I. Walkie-talkie:an Efficient Defense Against Passive Website Fingerprinting Attacks [C]// Proceedings of the 2017 26th USENIX Security Symposium.Berkeley:USENIX Association, 2017: 1375-1390. |
[62] | SIRINAM P, JUAREZ M, IMANI M, et al. Deep Fingerprinting:Undermining Website Fingerprinting Defenses with Deep Learning [C]//Proceedings of the 2018 ACM Conference on Computer and Communications Security.New York:ACM, 2018: 1928-1943. |
[63] | OVERDORF R, JUAREZ M, ACAR G, et al. How Unique is Your.Onion? An Analysis of the Fingerprintability of Tor Onion Services [C]//Proceedings of the 2017 ACM Conference on Computer and Communications Security.New York:ACM, 2017: 2021-2036. |
[64] | SIRINAM P, RAHMAN M S, MATHEWS N, et al. Triplet Fingerprinting:More Practical and Portable Website Fingerprinting with N-shot Learning [C]//Proceedings of the 2019 ACM Conference on Computer and Communications Security.New York:ACM, 2019: 1131-1148. |
[65] | RIMMER V, PREUVENEERS D, JUAREZ M, et al. Automated Website Fingerprinting through Deep Learning [J/OL].[2020-07-29].https://arxiv.org/pdf/1708.06376.pdf. |
[66] | SHUSTERMAN A, KANG L, HASKAL Y, et al. Robust Website Fingerprinting Through the Cache Occupancy Channel [C]//Proceedings of the 2019 28th USENIX Security Symposium.Berkeley:USENIX Association, 2019: 639-656. |
[67] | LI S, GUO H, HOPPER N. Measuring Information Leakage in Website Fingerprinting Attacks and Defenses [C]//Proceedings of the 2018 ACM Conference on Computer and Communications Security.New York:ACM, 2018: 1977-1992. |
[68] | SCHWARZ M, LACKNER F, GRUSS D. JavaScript Template Attacks:Automatically Inferring Host Information for Targeted Exploits[C/OL].[2020-07-26].https://gruss.cc/files/jstemplate.pdf. |
[69] | ARP D, YAMAGUCHI F, RIECK K. Torben:A Practical Side-channel Attack for Deanonymizing Tor Communication [C]//Proceedings of the 2015 10th ACM Symposium on Information,Computer and Communications Security.New York:ACM, 2015: 597-602. |
[70] | GILAD Y, HERZBERG A. Off-Path Attacking the Web [C]//Proceedings of the 2012 6th USENIX Workshop on Offensive Technologies.Berkeley:USENIX Association, 2012: 41-52. |
[71] | QIAN Z, MAO Z M. Off-path TCP Sequence Number Inference Attack-how Firewall Middleboxes Reduce Security [C]// Proceedings of the 2012 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2012: 347-361. |
[72] | CAO Y, QIAN Z, WANG Z, et al. Off-Path TCP Exploits:Global Rate Limit Considered Dangerous [C]//Proceedings of the 2016 25th USENIX Security Symposium.Berkeley:USENIX Association, 2016: 209-225. |
[73] | JANSEN R, VAIDYA T, SHERR M. Point Break:a Study of Bandwidth Denial-of-service Attacks Against Tor [C]// Proceedings of the 2019 28th USENIX Security Symposium.Berkeley:USENIX Association, 2019: 1823-1840. |
[74] | SIVAKORN S, POLAKIS I, KEROMYTIS A D. The Cracked Cookie Jar:HTTP Cookie Hijacking and the Exposure of Private Information [C]//Proceedings of the 2016 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2016: 724-742. |
[75] | MATIC S, KOTZIAS P, CABALLERO J. Caronte:Detecting Location Leaks for Deanonymizing Tor Hidden Services [C]//Proceedings of the 2015 ACM Conference on Computer and Communications Security.New York:ACM, 2015: 1455-1466. |
[76] | LOE A F, QUAGLIA E A. You Shall Not Join:A Measurement Study of Cryptocurrency Peer-to-Peer Bootstrapping Techniques [C]//Proceedings of the 2019 ACM Conference on Computer and Communications Security.New York:ACM, 2019: 2231-2247. |
[77] | BIRYUKOV A, PUSTOGAROV I. Bitcoin Over Tor isn't a Good Idea [C]//Proceedings of the 2015 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2015: 122-134. |
[78] | WINTER P, ENSAFI R, LOESING K, et al. Identifying and Characterizing Sybils in the Tor Network [C]//Proceedings of the 2016 25th USENIX Security Symposium.Berkeley:USENIX Association, 2016: 1169-1185. |
[79] | DOUCEUR J R. The Sybil Attack [C]//Lecture Notes in Computer Science:2429.Heidelberg:Springer Verlag, 2002: 251-260. |
[80] | 汤艳君, 安俊霖. 基于Tor的暗网数据爬虫设计与实现[J]. 信息安全研究, 2019,5(9):798-804. |
TANG Yanjun, AN Junlin. Design and Implementation of Dark Net Data Crawler Based on Tor[J]. Journal of Information Security Research, 2019,5(9):798-804. | |
[81] | 杨溢, 郭晗, 王轶骏, 等. 基于Tor的暗网空间资源探测[J]. 通信技术, 2017,50(10):2304-2309. |
YANG Yi, GUO Han, WANG Yijun, et al. Darknet Resource Exploring Based on Tor[J]. Communication Technology, 2017,50(10):2304-2309. | |
[82] | 杨云, 李凌燕, 魏庆征. 匿名网络Tor与I2P的比较研究[J]. 网络与信息安全学报, 2019,5(1):66-77. |
YANG Yun, LI Lingyan, WEI Qingzheng. Comparative Study of Anonymous Network Tor and I2P[J]. Chinese Journal of Network and Information Security, 2019,5(1):66-77. | |
[83] | CHUN B, CULLER D, ROSCOE T, et al. Planetlab:an Overlay Testbed for Broad-coverage Services[J]. Computer Communication Review, 2003,33(3):3-12. |
[84] | KOMOSNY D, MRDOVIC S, LLKO P, et al. Testing Internet Applications and Services Using PlanetLab[J]. Computer Standards and Interfaces, 2017,53:33-38. |
[85] | BAUER K, SHERR M, MCCOY D, et al. ExperimenTor:a Testbed for Safe and Realistic Tor Experimentation[C/OL].[2020-07-26].https://dl.acm.org/doi/10.5555/2027999.2028006. |
[86] | VISHWANATH K V, GUPTA D, VAHDAT A, et al. Modelnet:towards a Datacenter Emulation Environment [C]//Proceedings of the 2009 9th International Conference on Peer-to-Peer Computing.Washington:IEEE Computer Society, 2009: 81-82. |
[87] | JOHNSON A, WACEK C, JANSEN R, et al. Users Get Routed:Traffic Correlation on Tor by Realistic Adversaries [C]//Proceedings of the 2013 ACM Conference on Computer and Communications Security.New York:ACM, 2013: 337-348. |
[88] | JANSEN R, HOPPER N J. Shadow:Running Tor in a Box for Accurate and Efficient Experimentation[C/OL].[2020-07-26].https://www.mendeley.com/catalogue/0303022f-3fa8-3335-b373-26c73d56f214/. |
[1] | 左开中,刘蕊,赵俊,谌章义,陈付龙. 融合语义信息的时空关联位置隐私保护方法[J]. 西安电子科技大学学报, 2022, 49(1): 67-77. |
[2] | 刘华渊,苏云飞,李瑞林,唐朝京. 结构状态覆盖导向的灰盒模糊测试技术[J]. 西安电子科技大学学报, 2021, 48(1): 117-123. |
[3] | 李腾,曹世杰,尹思薇,魏大卫,马鑫迪,马建峰. 应用Q学习决策的最优攻击路径生成方法[J]. 西安电子科技大学学报, 2021, 48(1): 160-167. |
[4] | 杨宏宇,曾仁韵. 一种深度学习的网络安全态势评估方法[J]. 西安电子科技大学学报, 2021, 48(1): 183-190. |
[5] | 赵子军,应作斌,杨钊,刘西蒙,马建峰. 结合区块链和车辆社交网络的车队成员推荐[J]. 西安电子科技大学学报, 2020, 47(5): 122-129. |
[6] | 王慧,王励成,柏雪,刘清华,沈晓鹰. 区块链隐私保护和扩容关键技术研究[J]. 西安电子科技大学学报, 2020, 47(5): 28-39. |
[7] | 田海博,林会智,罗裴然,苏吟雪. 一种用户隐私保护数字货币的可监管方案[J]. 西安电子科技大学学报, 2020, 47(5): 40-47. |
[8] | 田美金,马建峰,刘志全,冯丙文,魏凯敏. 一种改进PSI协议的基因数据隐私保护方案[J]. 西安电子科技大学学报, 2020, 47(4): 94-101. |
[9] | 杨宏宇,张旭高. 一种网络安全态势自适应预测模型[J]. 西安电子科技大学学报, 2020, 47(3): 14-22. |
[10] | 杨宝旺. 采用符号动力学方法检测低速率拒绝服务攻击[J]. 西安电子科技大学学报, 2018, 45(1): 140-144. |
[11] | 梁洪泉;吴巍. 利用节点可信度的安全链路状态路由协议[J]. 西安电子科技大学学报, 2016, 43(5): 121-127. |
[12] | 王晋东;余定坤;张恒巍;王娜. 静态贝叶斯博弈主动防御策略选取方法[J]. J4, 2016, 43(1): 144-150. |
[13] | 王志强;张玉清;刘奇旭;黄庭培. 一种简单网络管理协议漏洞挖掘算法[J]. J4, 2015, 42(4): 20-26+40. |
[14] | 郭晶晶;马建峰. 面向虚拟社区物联网的信任推荐算法[J]. J4, 2015, 42(2): 52-57+179. |
[15] | 康海燕;XIONG Li. 面向大数据的个性化检索中用户匿名化方法[J]. J4, 2014, 41(5): 148-154+160. |
|