西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (3): 78-84.doi: 10.19665/j.issn1001-2400.2021.03.0010

• 计算机科学与技术&人工智能 • 上一篇    下一篇

一种适应度排序的高维多目标粒子群优化算法

杨五四1(),陈莉1,王毅1(),张茂省2()   

  1. 1.西北大学 信息科学与技术学院,陕西 西安 710021
    2.中国地质调查局西安地质调查中心 自然资源部黄土地质灾害重点实验室,陕西 西安 710054
  • 收稿日期:2019-10-31 出版日期:2021-06-20 发布日期:2021-07-05
  • 作者简介:杨五四(1984—),男,西北大学博士研究生,E-mail:yangwusi_154@163.com|王 毅(1979—),男,副教授,E-mail:wangyi@nwu.edu.cn|张茂省(1962—),男,教授,E-mail:xazms@126.com
  • 基金资助:
    国家重点研发计划项目(2018YFC1504700);陕西省自然科学基金项目(2018JM6029)

Many-objective particle swarm optimization algorithm for fitness ranking

YANG Wusi1(),CHEN Li1,WANG Yi1(),ZHANG Maosheng2()   

  1. 1. School of Information Technology and Software,Northwest University,Xi’an 710127,China
    2. Key Laboratory of Loess Landslide,Xi’an Center of Geological Survey, China Geological Survey,Xi’an 710054,China
  • Received:2019-10-31 Online:2021-06-20 Published:2021-07-05

摘要:

针对高维多目标优化问题复杂度高,求解难度大的特点,提出了一种集成适应度排序的高维多目标粒子群优化算法。该算法通过获取种群中个体与参考点最近的向量,结合基于惩罚的边界交叉方法对种群中的个体进行排序,并对较差的个体进行删除,留下的精英个体被保存到外部档案中。将该算法与性能先进的4种高维多目标进化优化算法在13个标准测试实例的5,8,10,15目标上进行实验对比,结果表明,提出的算法在大多数测试用例上的性能表现优于对比算法,同时说明了该算法具有较好的收敛性与多样性,能够有效地处理高维多目标优化问题。

关键词: 集成适应度排序, 高维多目标优化, 粒子群优化, 基于惩罚的边界交叉方法

Abstract:

Due to the complexity and difficulty of solving the many-objective optimization problem,a many-objective particle swarm optimization algorithm for ensemble fitness ranking is proposed.In this algorithm,the nearest vector between the individual and reference points in the population is obtained,and the individuals in the population are sorted by the penalty-based boundary intersection approach.Then,the poor individuals in the population are deleted and the elite individuals are saved in the external archives.The four advanced many-objective evolutionary optimization algorithms are adopted to make comparisons on 5,8,10,15 objectives of 13 standard test sets.Experimental results show that the performance of the proposed algorithm is better than comparison algorithms in most of the test cases.It has also been proved that the algorithm has good convergence and diversity,and that it can effectively deal with many-objective optimization problems.

Key words: ensemble fitness ranking, many-objective optimization, particle swarm optimization, penalty-based boundary intersection approach

中图分类号: 

  • TP18