西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (3): 106-114.doi: 10.19665/j.issn1001-2400.2021.03.014
收稿日期:
2020-07-16
出版日期:
2021-06-20
发布日期:
2021-07-05
作者简介:
刘天宇(1990—),女,讲师,E-mail:基金资助:
Received:
2020-07-16
Online:
2021-06-20
Published:
2021-07-05
摘要:
针对传统多目标粒子群算法容易早熟的问题,提出了一种基于多样性控制的多目标粒子群算法。该算法采用一种基于权值向量的多样性评价指标来度量算法在每一次迭代时的种群多样性,并根据评估值来自适应地控制算法的进化过程。为了保证种群的多样性,采用一种基于Steffensen方法的自适应变异策略对外部种群进行更新。通过自适应地选择粒子的全局最优位置来实现种群多样性与收敛性之间的平衡。将该算法与几种常用的多目标进化算法在一系列标准测试函数上进行了仿真实验,统计结果证明了所提算法的有效性。
中图分类号:
刘天宇,王翥. 一种多样性控制的多目标粒子群算法[J]. 西安电子科技大学学报, 2021, 48(3): 106-114.
LIU Tianyu,WANG Zhu. Diversity controlled multiobjective particle swarm optimization[J]. Journal of Xidian University, 2021, 48(3): 106-114.
表3
算法针对不同测试问题的平均IGD值"
问题 | 算法 | ||||
---|---|---|---|---|---|
MOPSO-DC | MOPSO | dMOPSO | NSGA-II | MOEA/D | |
ZDT 1 | 4.01e-03 (1) | 2.70e+01 (5) | 234e-02 (2) | 1.64e-01 (3) | 1.76e-01 (4) |
ZDT 2 | 4.18e-03 (1) | 4.78e+01 (5) | 3.79e-01 (3) | 5.21e-01 (4) | 3.30e-01 (2) |
ZDT 3 | 3.74e-03 (1) | 4.54e+01 (5) | 2.32e-02 (2) | 1.95e-01 (3) | 2.06e-01 (4) |
ZDT 4 | 1.14e+01 (4) | 2.32e+01 (5) | 5.68e-01 (3) | 2.92e-01 (1) | 4.38e-01 (2) |
ZDT 6 | 3.40e-03 (1) | 4.22e-01 (5) | 4.58e-03 (2) | 7.27e-02 (3) | 9.75e-02 (4) |
DTLZ 1 | 9.07e+00 (4) | 1.09e+01 (5) | 8.45e+00 (3) | 9.16e-02 (2) | 4.01e-02 (1) |
DTLZ 2 | 5.48e-02 (1) | 1.05e-01 (4) | 1.37e-01 (5) | 7.14e-02 (3) | 6.14e-02 (2) |
DTLZ 3 | 1.90e+02 (4) | 2.62e+02 (5) | 3.76e+01 (3) | 8.31e+00 (1) | 1.38e+01 (2) |
WFG 1 | 1.52e+00 (3) | 1.96e+00 (5) | 1.55e+00 (4) | 1.04e+00 (1) | 1.16e+00 (2) |
WFG 2 | 2.04e-01 (1) | 3.23e-01 (4) | 3.71e-01 (5) | 2.22e-01 (2) | 3.21e-01 (3) |
WFG 3 | 1.56e-01 (2) | 3.58e-01 (3) | 4.05e-01 (4) | 1.18e-01 (1) | 4.63e-01 (5) |
WFG 4 | 2.68e-01 (1) | 4.15e-01 (5) | 3.92e-01 (4) | 2.79e-01 (2) | 2.95e-01 (3) |
WFG 5 | 2.59e-01 (1) | 3.63e-01 (4) | 3.95e-01 (5) | 2.86e-01 (3) | 2.78e-01 (2) |
WFG 6 | 2.64e-01 (1) | 4.88e-01 (5) | 4.48e-01 (4) | 3.27e-01 (3) | 3.00e-01 (2) |
WFG 7 | 2.62e-01 (1) | 4.43e-01 (4) | 4.67e-01 (5) | 2.80e-01 (2) | 4.35e-01 (3) |
WFG 8 | 3.74e-01 (1) | 3.86e-01 (2) | 5.99e-01 (5) | 3.96e-01 (4) | 3.91e-01 (3) |
WFG 9 | 2.53e-01 (1) | 3.88e-01 (4) | 3.67e-01 (3) | 2.64e-01 (2) | 4.47e-01 (5) |
表4
算法针对不同测试问题的平均SP值"
问题 | 算法 | ||||
---|---|---|---|---|---|
MOPSO-DC | MOPSO | dMOPSO | NSGA-II | MOEA/D | |
ZDT 1 | 4.54e-03 (1) | 2.61e-02 (5) | 1.02e-02 (2) | 1.32e-02 (3) | 2.26e-02 (4) |
ZDT 2 | 4.51e-03 (1) | 1.84e-02 (4) | 5.40e-03 (2) | 4.88e-02 (5) | 1.09e-02 (3) |
ZDT 3 | 7.34e-03 (1) | 3.18e-02 (4) | 2.52e-02 (3) | 1.54e-02 (2) | 6.46e-02 (5) |
ZDT 4 | 1.04e-01 (3) | 1.06e-01 (4) | 3.52e-03 (1) | 2.22e-01 (5) | 1.35e-02 (2) |
ZDT 6 | 2.17e-03 (1) | 2.05e-01 (5) | 3.37e-03 (2) | 1.31e-02 (3) | 3.30e-02 (4) |
DTLZ 1 | 2.56e+00 (3) | 6.17e+00 (4) | 6.25e+00 (5) | 2.34e-02 (1) | 2.56e-02 (2) |
DTLZ 2 | 5.22e-02 (1) | 6.41e-02 (4) | 6.55e-02 (5) | 5.37e-02 (2) | 5.60e-02 (3) |
DTLZ 3 | 2.89e+01 (3) | 6.86e+01 (5) | 4.87e+01 (4) | 4.66e-01 (1) | 1.67e+00 (2) |
WFG 1 | 7.18e-02 (1) | 4.71e-01 (5) | 1.84e-01 (3) | 3.58e-01 (4) | 1.68e-01 (2) |
WFG 2 | 2.66e-01 (2) | 2.88e-01 (4) | 2.81e-01 (3) | 2.95e-01 (5) | 1.19e-01 (1) |
WFG 3 | 1.14e-01 (1) | 1.43e-01 (3) | 2.13e-01 (4) | 1.17e-01 (2) | 2.23e-01 (5) |
WFG 4 | 2.26e-01 (3) | 2.01e-01 (1) | 2.42e-01 (4) | 2.25e-01 (2) | 2.79e-01 (5) |
WFG 5 | 2.01e-01 (1) | 2.04e-01 (2) | 3.23e-01 (5) | 2.27e-01 (3) | 2.42e-01 (4) |
WFG 6 | 2.03e-01 (1) | 2.18e-01 (2) | 2.51e-01 (4) | 2.35e-01 (3) | 2.65e-01 (5) |
WFG 7 | 2.15e-01 (3) | 1.78e-01 (1) | 2.64e-01 (4) | 2.04e-01 (2) | 3.24e-01 (5) |
WFG 8 | 2.39e-01 (2) | 1.99e-01 (1) | 2.65e-01 (3) | 2.67e-01 (4) | 3.00e-01 (5) |
WFG 9 | 2.00e-01 (2) | 1.83e-01 (1) | 2.88e-01 (4) | 2.07e-01 (3) | 2.84e-01 (5) |
[1] | XU Z, ZHANG E Z, CHEN Q W. Rotary Unmanned Aerial Vehicles Path Planning in Rough Terrain Based on Multi-Objective Particle Swarm Optimization[J]. Journal of Systems Engineering and Electronics, 2020,31(1):130-141. |
[2] | YU S, FAN Y, WU Y W, et al. Multi-Power Quality Controller Coordination Control Based on Multi-Objective Particle Swarm Optimization[C]// Proceedings of the 2019 IEEE 2nd International Conference on Electronics and Communication Engineering (ICECE).Piscataway:IEEE, 2019: 397-402. |
[3] | 王燕. 改进多目标进化算法的云工作流调度[J]. 西安电子科技大学学报, 2019,46(1):130-136. |
WANG Yan. Enhanced Multi-objective Evolutionary Algorithm for Workflow Scheduling on the Cloud Platform[J]. Journal of Xidian University, 2019,46(1):130-136. | |
[4] | COELLO C A C, LECHUGA M S. MOPSO:a Proposal for Multiple Objective Particle Swarm Optimization[C]// Proceedings of the 2002 Congress on Evolutionary Computation.Piscataway:IEEE, 2002: 1051-1056. |
[5] | 于慧, 王宇嘉, 陈强, 等. 基于多种群动态协同的多目标粒子群算法[J]. 电子科技, 2019,32(10):28-33. |
YU Hui, WANG Yujia, CHEN Qiang, et al. Multi-Objective Particle Swarm Optimization Based on Multi-population Dynamic Cooperation[J]. Electronic Science and Technology, 2019,32(10):28-33. | |
[6] | HAN H G, WU X L, ZHANG L, et al. Self-Organizing RBF Neural Network Using an Adaptive Gradient Multiobjective Particle Swarm Optimization[J]. IEEE Transactions on Systems,Man,and Cybernetics, 2019,49(1):69-82. |
[7] |
ZHANG X Y, ZHENG X T, CHENG R, et al. A Competitive Mechanism Based Multi-Objective Particle Swarm Optimizer with Fast Convergence[J]. Information Sciences, 2018,427:63-76.
doi: 10.1016/j.ins.2017.10.037 |
[8] | RAQUEL C R, NAVAL P C. An Effective Use of Crowding Distance in Multi-Objective Particle Swarm Optimization[C]// Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation.Piscataway:IEEE, 2005: 257-264. |
[9] | MARTÍNEZ S Z, COELLO C A C. A Multi-Objective Particle Swarm Optimizer Based on Decomposition[C]// Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation.Piscataway:IEEE, 2011: 69-76. |
[10] |
LI H, ZHANG Q F. Multiobjective Optimization Problems with Complicated Pareto Sets,MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2009,13(2):284-302.
doi: 10.1109/TEVC.2008.925798 |
[11] |
JAIN P. Steffensen Type Methods for Solving Non-Linear Equations[J]. Applied Mathematics and Computation, 2007,194(2):527-533.
doi: 10.1016/j.amc.2007.04.087 |
[12] |
AFZALINEJAD M. Rapidly Convergent Steffensen-Based Methods for Unconstrained Optimization[J]. Rairo-Operations Research, 2019,53(2):657-666.
doi: 10.1051/ro/2017043 |
[13] |
DAS I, DENNIS J E. Normal-Boundary Intersection:A New Method for Generating The Pareto Surface in Nonlinear Multicriteria Optimization Problems[J]. SIAM Journal on Optimization, 1998,8(3):631-657.
doi: 10.1137/S1052623496307510 |
[14] |
DEB K, AGRAWAL S, PRATAP A, et al. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002,6(2):182-197.
doi: 10.1109/4235.996017 |
[15] |
ZHANG Q F, LI H. MOEA/D:a Multi-Objective Evolutionary Algorithm Based on Decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007,11(6):712-731.
doi: 10.1109/TEVC.2007.892759 |
[16] |
COELLO C A, CORTÉS N C, Solving Multiobjective Optimization Problems Using an Artificial Immune System[J]. Genetic Programming and Evolvable Machines, 2005,6(2):163-190.
doi: 10.1007/s10710-005-6164-x |
[17] |
LIU T, JIAO L, MA W, et al. Cultural Quantum-Behaved Particle Swarm Optimization for Environmental/Economic Dispatch[J]. Applied Soft Computing, 2016,48:597-611.
doi: 10.1016/j.asoc.2016.04.021 |
[1] | 张宇鹏,吴自力,陈鸣,张璐璐. 面向交叉微服务链的任务调度优化[J]. 西安电子科技大学学报, 2021, 48(6): 32-39. |
[2] | 杜文占,余志勇,杨剑,姜海滨. 改进NSGA-II算法及监测天线部署优化研究[J]. 西安电子科技大学学报, 2021, 48(5): 239-248. |
[3] | 闫群民,马瑞卿,马永翔,王俊杰. 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48(4): 120-127. |
[4] | 杨五四,陈莉,王毅,张茂省. 一种适应度排序的高维多目标粒子群优化算法[J]. 西安电子科技大学学报, 2021, 48(3): 78-84. |
[5] | 王燕. 改进多目标进化算法的云工作流调度[J]. 西安电子科技大学学报, 2019, 46(1): 130-136. |
[6] | 刘道华, 胡秀云, 赵岩松, 崔玉爽. 一种动态分群带熵权的粒子群优化方法[J]. 西安电子科技大学学报, 2018, 45(6): 69-74. |
[7] | 韩亚敏;柴争义;李亚伦;朱思峰. 长尾群组推荐的免疫多目标优化实现[J]. 西安电子科技大学学报, 2018, 45(3): 109-116. |
[8] | 王丹青;李萍. 利用GEK代理模型的天线快速多目标优化设计[J]. 西安电子科技大学学报, 2018, 45(2): 129-134+165. |
[9] | 张轩;李勇朝;叶迎晖;张海林. 利用匹配傅里叶变换的直扩信号捕获算法[J]. 西安电子科技大学学报, 2017, 44(5): 18-24+113. |
[10] | 杨威;刘宏清;黎勇;周翊. 冲击噪声下的LMS和RLS联合滤波算法[J]. 西安电子科技大学学报, 2017, 44(2): 165-170. |
[11] | 林峰;陈建军;曹鸿钧. 复合材料压力容器的概率与区间可靠性设计[J]. 西安电子科技大学学报, 2017, 44(1): 45-51. |
[12] | 刘道华;陈良琼;胡秀云;张倩. 一种带停滞信息的自适应粒子群优化方法[J]. 西安电子科技大学学报, 2016, 43(3): 120-124+160. |
[13] | 王明昭;王宇平;王晓丽;卫珍. 一种均匀聚集距离的改进NSGA-Ⅱ算法[J]. 西安电子科技大学学报, 2016, 43(3): 49-54+130. |
[14] | 魏声云;张静;郭虹;李鸥. 改进二进制粒子群优化的节点选择算法[J]. 西安电子科技大学学报, 2016, 43(2): 150-156. |
[15] | 雷雨;焦李成;公茂果;李玲玲. 求解多目标考试时间表问题的NNIA改进算法[J]. 西安电子科技大学学报, 2016, 43(2): 157-161+192. |
|