[1] |
WANG T, ZHANG S, DONG J, et al. Automatic Evaluation of the Degree of Facial Nerve Paralysis[J]. Multimedia Tools and Applications, 2016,75(19):11893-11908.
doi: 10.1007/s11042-015-2696-0
|
[2] |
林杨. 面瘫患者面部运动功能自动分级方法研究[D]. 山东:中国海洋大学, 2008.
|
[3] |
SONG A P, XU G L, DING X H, et al. Assessment for Facial Nerve Paralysis Based on Facial Asymmetry[J]. Australasian Physical and Engineering Sciences in Medicine, 2017,40(4):851-860.
doi: 10.1007/s13246-017-0597-4
|
[4] |
HE S, SORAGHAN J J, O'REILLY B F, et al. Quantitative Analysis of Facial Paralysis Using Local Binary Patterns in Biomedical Videos[J]. IEEE Transactions on Biomedical Engineering, 2009,56(7):1864-1870.
doi: 10.1109/TBME.2009.2017508
|
[5] |
GUO Z, SHEN M, DUAN L, et al. Deep Assessment Process:Objective Assessment Process for Unilateral Peripheral Facial Paralysis Via Deep Convolutional Neural Network[C]// Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).Piscataway:IEEE, 2017: 135-138.
|
[6] |
YOSHIHARA H, SEO M, NGO T H, et al. Automatic Feature Point Detection Using Deep Convolutional Networks for Quantitative Evaluation of Facial Paralysis[C]// Proceedings of the 2016 9th International Congress on Image and Signal Processing,BioMedical Engineering and Informatics(CISP-BMEI).Piscataway:IEEE, 2016: 811-814.
|
[7] |
陈莉明, 邓德祥. 混合深度卷积神经网络对人脸年龄的分类[J]. 华中科技大学学报(自然科学版), 2019,47(03):104-108.
|
|
CHEN L, DENG D. Face Age Classification Based on Hybrid Deep Convolution Neural Network[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019,47(03):104-108.
|
[8] |
ALLEN Z Z, LI Y Z. What Can ResNet Learn Efficiently,Going Beyond Kernels?[C] Proceedings of the NeurIPS:Neural Information Processing Systems.Piscataway:IEEE, 2019: 9017-9028.
|
[9] |
徐彬, 陈渤, 刘家麒, 等 .采用双向 LSTM 模型的雷达 HRRP 目标识别[J]. 西安电子科技大学学报, 2019,46(2):29-34.
|
|
XU Bin, CHEN Bo, LIU Jiaqi, et al. Radar HRRP Target Recognition by the Bidirectional LSTM Model[J]. Journal of Xidian University, 2019,46(2):29-34.
|
[10] |
XU P, WANG L, GUAN Z, et al. Evaluating Brush Movements for Chinese Calligraphy:a Computer Vision Based Approach[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence.Piscataway:IEEE, 2018: 1050-1056.
|
[11] |
YAO G, LEI T, ZHONG J. A Review of Convolutional-Neural-Network-Based Action Recognition[J]. Pattern Recognition Letters, 2019,118:14-22.
doi: 10.1016/j.patrec.2018.05.018
|
[12] |
EUSEBIO J M A. Convolutional Neural Networks for Facial Expression Recognition[C/OL]. [2020-12-12]. https://repository.asu.edu/items/37376.
|
[13] |
REDDY S P T, KARRI S T, DUBEY S R, et al. Spontaneous Facial Micro-Expression Recognition Using 3D Spatiotemporal Convolutional Neural Networks[C]// Proceedings of the 2019 International Joint Conference on Neural Networks(IJCNN).Piscataway:IEEE, 2019: 1-8.
|
[14] |
梁晓曦, 蔡晓东, 王萌, 等. NRCNN 与角度度量融合的人脸识别方法[J]. 西安电子科技大学学报, 2018,45(6):144-149.
|
|
LIANG Xiaoxi, CAI Xiaodong, WANG Meng, et al. Face Recognition Method for Integrating the Nested Residual CNN and Angular Metric[J]. Journal of Xidian University, 2018,45(6):144-149.
|
[15] |
JING L, TIAN Y. Self-Supervised Visual Feature Learning with Deep Neural Networks:a Survey[J/OL]. [2020-12-12]. http://ieeexplore.ieee.org/document/9086055.doi:101109/TPAMI.2020.2992393.
|
[16] |
SAMSUDIN W S W, SUNDARAJ K. Clinical and Non-Clinical Initial Assessment of Facial Nerve Paralysis:a Qualitative Review[J]. Biocybernetics and Biomedical Engineering, 2014,34(2):71-78.
doi: 10.1016/j.bbe.2014.02.005
|
[17] |
BANSAL M, SHAH A, GOSAI B, et al. A Simple,Objective,and Mathematical Grading Scale for the Assessment of Facial Nerve Palsy[J]. Otology and Neurotology, 2020,41(1):105-114.
doi: 10.1097/MAO.0000000000002450
|
[18] |
LIU L, CHENG G, DONG J, et al. Evaluation of Facial Paralysis Degree Based on Regions[C]// Proceedings of the 2010 Third International Conference on Knowledge Discovery and Data Mining.Piscataway:IEEE, 2010: 514-517.
|
[19] |
MODERSOHN L, DENZLER J. Facial Paresis Index Prediction by Exploiting Active Appearance Models for Compact Discriminative Features[C]// Proceedings of the International Conference on Computer Vision Theory and Applications.Piscataway:IEEE, 2016: 271-278.
|
[20] |
MA L. Research into Assessment of Facial Paralysis Based on Key Points and Regions[D]. Shandong:Chinese Marine University, 2009.
|
[21] |
NGO T H, SEO M, CHEN Y W, et al. Quantitative Assessment of Facial Paralysis Using Local Binary Patterns and Gabor Filters[C]// Proceedings of the Fifth Symposium on Information and Communication Technology.Piscataway:IEEE, 2014: 155-161.
|
[22] |
NGO T H, SEO M, MATSUSHIRO N, et al. Quantitative Analysis of Facial Paralysis Based on Filters of Concentric Modulation[C]// Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery(FSKD).Piscataway:IEEE, 2015: 1758-1763.
|
[23] |
NISHIDA T, CHEN Y W, MATSUSHIRO N, et al. An Image Based Quantitative Evaluation Method for Facial Paralysis[C]// Proceedings of the 2nd International Conference on Software Engineering and Data Mining.Piscataway:IEEE, 2010: 706-709.
|
[24] |
BARBOSA J, LEE K, LEE S, et al. Efficient Quantitative Assessment of Facial Paralysis Using Iris Segmentation and Active Contour-Based Key Points Detection with Hybrid Classifier[J]. BMC Medical Imaging, 2016,16(1):23.
doi: 10.1186/s12880-016-0117-0
|
[25] |
LIU X, DONG S, AN M, et al. Quantitative Assessment of Facial Paralysis Using Infrared Thermal Imaging[C]// Proceedings of the 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI).Piscataway:IEEE, 2015: 106-110.
|
[26] |
WANG X, HE K, GUPTA A. Transitive Invariance for Self-Supervised Visual Representation Learning[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017: 1338-1347.
|
[27] |
XU D, XIAO J, ZHAO Z, et al. Self-Supervised Spatiotemporal Learning Via Video Clip Order Prediction[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019: 10334-10343.
|
[28] |
GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision.Piscataway:IEEE, 2015: 1440-1448.
|