西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (4): 73-82.doi: 10.19665/j.issn1001-2400.2021.04.010

• 信息与通信工程&电子科学与技术 • 上一篇    下一篇

应用统计线性回归的系统误差最大似然配准

李佳炜1(),江晶2(),吴卫华1(),郑玉军3()   

  1. 1.空军预警学院 预警情报系,湖北 武汉 430019
    2.空军预警学院 空天预警系,湖北 武汉 430019
    3.中国人民解放军94710部队,江苏 无锡 214000
  • 收稿日期:2020-05-18 出版日期:2021-08-30 发布日期:2021-08-31
  • 作者简介:李佳炜(1992—),男,空军预警学院博士研究生,E-mail: jiaweili1992@163.com|江 晶(1964—),男,教授,博士,E-mail: jiangj36@sina.com|吴卫华(1987—),男,副教授,博士,E-mail: weihuawu1987@163.com|郑玉军(1988—),男,工程师,博士,E-mail: junleida@163.com
  • 基金资助:
    国家自然科学基金(61601510)

Maximum likelihood registration for systemic error based on statistical linear regression

LI Jiawei1(),JIANG Jing2(),WU Weihua1(),ZHENG Yujun3()   

  1. 1. Early Warning Intelligence Department,Air Force Early Warning Academy,Wuhan 430019,China
    2. Aerospace Early Warning Department,Air Force Early Warning Academy,Wuhan 430019,China
    3. Unit 94710 of the PLA,Wuxi 214000,China
  • Received:2020-05-18 Online:2021-08-30 Published:2021-08-31

摘要:

针对协同多传感器系统探测目标过程中存在着非随机系统误差的问题,提出一种基于统计线性回归的最大似然配准算法。首先通过联合最大化目标状态和系统误差的似然函数,建立多传感器系统的配准方程;然后利用一组不完全相同的回归点处理非线性量测转换的线性化问题,通过统计线性回归,构建目标状态关于去偏量测的回归方程,并得到投影后目标状态的前二阶统计特性;最后利用似然最大化迭代求解配准方程,实现对系统误差和目标状态的联合估计。仿真结果表明,基于统计线性回归的最大似然配准算法能在各观测维度上实现多个传感器的配准,且相比经典最大似然配准算法具有更高的配准精度和相当的计算复杂度。

关键词: 协同多传感器系统, 系统误差, 统计线性回归, 最大似然配准

Abstract:

Generally,there are non-random systemic errors in target detection with the cooperative multi-sensor system.In order to solve this problem,a maximum likelihood registration algorithm based on statistical linear regression (SLR-MLR) is presented.The registration equation for the multi-sensor system is established first by jointly maximizing the likelihood function of the target state and systemic error,on the basis of which the proposed algorithm utilizes a set of diverse regression points to handle the linearization problem of the nonlinear measurement transformation.The regression equation for the target state with respect to unbiased measurement is constructed through statistical linear regression,and then the first two statistical properties of the projected state can be obtained.Moreover,the algorithm uses the likelihood maximization iteration to seek the solution of the registration equation,thus achieving the joint estimation for the systemic error and target state.Simulation results show that the SLR-MLR can achieve the registration of multiple sensors in each observation dimension,and has a higher accuracy and near computational complexity compared with the classical MLR.

Key words: cooperative multi-sensor system, systemic error, statistical linear regression, maximum likelihood registration

中图分类号: 

  • TP274