[1] |
PERROT P, AVERSANO G. Voice Disguise and Automatic Detection:Review and Perspectives[C]//Progress in Nonlinear Speech Processing.Berlin:Springer-Verlag, 2007:101-117.
|
[2] |
GOMEZ-ALANIS A, PEINADO A M, GONZALEZ J A, et al. A Gated Recurrent Convolutional Neural Network for Robust Spoofing Detection[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing (TASLP), 2019, 27(12):1985-1999.
|
[3] |
ALAM J, KENNY P. Spoofing Detection Employing Infinite Impulse Response—Constant Q Transform-Based Feature Representations[C]//Proceedings of the 2017 25th European Signal Processing Conference(EUSIPCO).Piscataway:IEEE, 2017:101-105.
|
[4] |
HANILCI C. Speaker Verification Anti-Spoofing Using Linear Prediction Residual Phase Features[C]//Proceedings of the 2017 25th European Signal Processing Conference(EUSIPCO).Piscataway:IEEE, 2017:96-100.
|
[5] |
KAMBLE M R, PATIL H. Novel Energy Separation Based Instantaneous Frequency Features for Spoof Speech Detection[C]//Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO).Piscataway:IEEE, 2017:106-110.
|
[6] |
MUCKENHIM H, KORSHUNOV P, MAGIMAI-DOSS M, et al. Long-Term Spectral Statistics for Voice Presentation Attack Detection[J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2017, 25(11):2098-2111.
doi: 10.1109/TASLP.2017.2743340
|
[7] |
DINKEL H, QIAN Y, YU K. Small-Footprint Convolutional Neural Network for Spoofing Detection[C]//Proceedings of the 2017 International Joint Conference on Neural Networks(IJCNN).Piscataway:IEEE, 2017:3086-3091.
|
[8] |
SAHIDULLAH M, THOMSEN D A L, HAUTAMAKI R G, et al. Robust Voice Liveness Detection and Speaker Verification Using Throat Microphones[J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2018, 26(1):44-56.
doi: 10.1109/TASLP.2017.2760243
|
[9] |
LEE K, PARK C, KIM N, et al. Accelerating Recurrent Neural Network Language Model Based Online Speech Recognition System[C]//Proceedings of the 2018 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway:IEEE, 2018:5904-5908.
|
[10] |
SAILOR H, KAMBLE M, PATIL H. Auditory Filterbank Learning for Temporal Modulation Features in Replay Spoof Speech Detection[C]//Proceedings of the Interspeech.Piscataway:IEEE, 2018:666-670.
|
[11] |
KUMAR M G, KUMAR R S. Spoof Detection Using Time-Delay Shallow Neural Network and Feature Switching[C]//Proceedings of the 2019 IEEE Automatic Speech Recognition and Understanding Workshop(ASRU).Piscataway:IEEE, 2019:1011-1017.
|
[12] |
GOMEZ-ALANIS A, GONZALEZ-LOPEZ A, PEINADO A M. A Kernel Density Estimation Based Loss Function and Its Application to ASV-Spoofing Detection[J]. IEEE Access, 2020, 8:108530-108543.
doi: 10.1109/Access.6287639
|
[13] |
BALAMURALI B T, LIN K, LUI S, et al. Toward Robust Audio Spoofing Detection:a Detailed Comparison of Traditional and Learned Features[J]. IEEE Access, 2019, 7:84229-84241.
doi: 10.1109/Access.6287639
|
[14] |
KAMBLE M, PATIL H. Analysis of Reverberation via Teager Energy Features for Replay Spoof Speech Detection[C]//Proceedings of the 2019 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway:IEEE, 2019:2607-2611.
|
[15] |
YE Y, LAO L, YAN D, et al. Detection of Replay Attack Based on Normalized Constant Q Cepstral Feature[C]//Proceedings of the 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis.Piscataway:IEEE, 2019:407-411.
|
[16] |
NOSEK T, SUZIC S, PAPIC B, et al. Synthesized Speech Detection Based on Spectrogram and Convolutional Neural Networks[C]//Proceedings of the 2019 27th Telecommunications Forum.Belgrade:Serbia, 2019:1-4.
|
[17] |
ACHARYA R, PATIL H, KOTTA H. Novel Enhanced Teager Energy Based Cepstral Coefficients for Replay Spoof Detection[C]//Proceedings of the 2019 IEEE Automatic Speech Recognition and Understanding Workshop.Piscataway:IEEE, 2019:342-349.
|
[18] |
MALIK K M, JAVED A, MALIK H, et al. A Light-Weight Replay Detection Framework for Voice Controlled IoT Devices[J]. IEEE Journal of Selected Topics in Signal Processing,Early Access Article, 2020, 14(5):982-996.
|
[19] |
KAMBLE M R, KRISHNA SAI P A. Speech Demodulation-Based Techniques for Replay and Presentation Attack Detection[C]//Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference.Piscataway:IEEE, 2019:1545-1550.
|
[20] |
SINITCA A M, EFIMCHIK N V, SHALUGIN E D, et al. Voice Antispoofing System Vulnerabilities Research[C]//Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering,St.Piscataway:IEEE, 2020:505-508.
|
[21] |
MONTEIRO J, ALAM J, FALK T H. An Ensemble Based Approach for Generalized Detection of Spoofing Attacks to Automatic Speaker Recognizers[C]//Proceedings of the 2020 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway:IEEE, 2020:6599-6603.
|
[22] |
WANG Y, DENG Y H, WU H J, et al. Blind Detection of Electronic Voice Transformation with Natural Disguise[C]//Proceedings of the Digital Forensics and Watermaking,LNCS 7809.Berlin:Springer-Varlag, 2013:336-343.
|
[23] |
WU H, WANG Y, HUANG J. Identification of Electronic Disguised Voices[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(3):489-500.
doi: 10.1109/TIFS.2014.2301912
|
[24] |
WU H, WANG Y, HUANG J. Blind Detection of Electronic Disguised Voice[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway:IEEE, 2013:3013-3017.
|
[25] |
LIANG H, LIN X, ZHANG Q, et al. Recognition of Spoofed Voice Using Convolutional Neural Networks[C]//Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing(GlobalSIP).Piscataway:IEEE, 2017:293-297.
|
[26] |
LAROCHE J. Time and Pitch Scale Modification of Audio Signals[M]. Applications of Digital Signal Processing to Audio and Acoustics.Moscow:Kluwer Academic Publishers, 2002:279-310.
|
[27] |
TREHUB S, COHEN A, THORPE L, et al. Development of the Perception of Musical Relations:Semitone and Diatonic Structure[J]. Journal of Experimental Psychology Human Perception and Performance, 1986, 12(3):295-301.
doi: 10.1037/0096-1523.12.3.295
|
[28] |
HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C].// 2016 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:770-778.
|
[29] |
SRIVASTAVA R K, GREFF K, SCHMIDHUBER. Training Very Deep Networks [C]. //Conference and Workshop on Neural Information Processing Systems,Advances in Neural Information Processing Systems 28.New York:Curran Associates, 2015:2377-2385.
|
[30] |
LARSSON G, MAIRE M, SHAKHNAROVICH G. FractalNet:Ultra-Deep Neural Networks without Residuals[C]//Proceedings of the Internatienal Conference on Learning Represemtations.Piscataway:IEEE, 2017:403-410.
|
[31] |
HUANG G, SUN Y, LIU Z, et al. Deep Networks with Stochastic Depth[C]//Proleedings of the European Conference on Computer Vision.Piscataway:IEEE, 2016:646-661.
|