[1] |
陈旭, 刘鹏鹤, 孙毓忠, 等. 面向不均衡医学数据集的疾病预测模型研究[J]. 计算机学报, 2019, 42(03):596-609.
|
|
CHEN Xu, LIU Penghe, SUN Yuzhong, et al. Research on Disease Prediction Models Based on Imbalanced Medical Data Sets[J]. Chinese Journal of Computers, 2019, 42(03):596-609.
|
[2] |
FIOREU, DE S A, PERLA F, et al. Using Generative Adversarial Networks for Improving Classification Effectiveness in Credit Card Fraud Detection[J]. Information Sciences, 2017, 479:448-455.
doi: 10.1016/j.ins.2017.12.030
|
[3] |
宋胜利, 王少龙, 陈平. 面向文本分类的中文文本语义表示方法[J]. 西安电子科技大学学报, 2013, 40(02):89-97.
|
|
SONG Shengli, WANG Shaolong, CHEN Ping. Semantic Representation of Chinese Text for Text Classification[J]. Journal of Xidian University, 2013, 40(02):89-97.
|
[4] |
AIHONG W, NAN Y, CAO X. Multi-Classification Cluster Analysis of Large Data Based on Knowledge Element in Microblogging Short Text[J]. Cluster Computing, 2019, 22(2):4119-4127.
doi: 10.1007/s10586-017-1517-9
|
[5] |
GUPTA M, BAKLIWAL A, AGARWAL S, et al. A Comparative Study of Spam SMS Detection Using Machine Learning Classifiers[C]//Proceedings of the 2018 Eleventh International Conference on Contemporary Computing (IC3).Piscataway:IEEE, 2018:1-7.
|
[6] |
MARTIN-DIAZ I, MORINIGO-SOTELO D, DUQUE-PEREZ O, et al. Early Fault Detection in Induction Motors Using AdaBoost with Imbalanced Small Data and Optimized Sampling[J]. IEEE Transactions on Industry Applications, 2017, 53(3):3066-3075.
doi: 10.1109/TIA.2016.2618756
|
[7] |
LIN W C, TSAI C F, HU Y H, et al. Clustering-Based Undersampling in Class-Imbalanced Data[J]. Information Sciences, 2017, 409:17-26.
|
[8] |
熊冰妍, 王国胤, 邓维斌. 基于样本权重的不平衡数据欠抽样方法[J]. 计算机研究与发展, 2016, 53(11):2613-2622.
|
|
XIONG Bingyan, WANG Guoyin, DENG Weibin. Under-Sampling Method Based on Sample Weight for Inbalanced Data[J]. Journal of Computer Research and Development, 2016, 53(11):2613-2622.
|
[9] |
KANG Q, SHI L, ZHOU M C, et al. A Distance-Based WeightedUndersampling Scheme for Support Vector Machines and Its Application to Imbalanced Classification[J]. IEEE Transactions on Neural Networks, 2018, 29(9):4152-4165.
|
[10] |
蔡艳艳, 宋晓东. 针对非平衡数据分类的新型模糊SVM模型[J]. 西安电子科技大学学报, 2015, 42(05):120-124.
|
|
CAI Yanyan, SONG Xiaodong. New Fuzzy SVM Model Used in Imbalanced Datasets[J]. Journal of Xidian University, 2015, 42(05):120-124.
|
[11] |
李钊, 袁文浩, 任崇广, 等. 跨层精度自动调节的k均值聚类近似计算方法[J]. 西安电子科技大学学报, 2020, 47(03):50-57.
|
|
LI Zhao, YUAN Wenhao, REN Chongguang, et al. Approximate Computing Method Based on Cross-Layer Dynamic Precision Scaling For the k-means[J]. Journal of Xidian University, 2020, 47(03):50-57.
|
[12] |
薛丽香, 邱保志. 基于变异系数的边界点检测算法[J]. 模式识别与人工智能, 2009, 22(5):799-802.
|
|
XUE Lixiang, QIU Baozhi. Boundary Points Detection Algorithm Based on Coefficient Variation[J]. Pattern Recognition and Artificial Intelligence, 2009, 22(5):799-802.
|
[13] |
BREUNIG M M, KRIEGEL H P, NG R T. LOF:Identifying Density-Based Local Outliers[C/OL].[2020-04-30].https://www.docin.com/P-1572662359.html .
|
[14] |
XIA C, HSU W, LEE M L, et al. BORDER:Efficient Computation of Boundary Points[J]. IEEE Transactions on Knowledge and Engineering, 2006, 18(3):289-303.
|
[15] |
黄浩, 何钦铭, 陈奇. 基于加权边界度的稀有类检测算法[J]. 软件学报, 2012, 23(05):1195-1206.
|
|
HUANG Hao, HE Qinming, CHEN Qi. Rare Categeory Detection Algorithm Based on Weighted Boundary Dedree[J]. Jouanal of Software, 2012, 23(05):1195-1206.
|
[16] |
FREUND Y, SCHAPIRE R E. A Decision-Theoretic Generalization of On-Line Learning and An Application to Boosting[J]. Journal of Computer and System Sciences, 1997, 55(1):119-139.
doi: 10.1006/jcss.1997.1504
|