西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (4): 200-208.doi: 10.19665/j.issn1001-2400.2021.04.026

• 计算机科学与技术&网络空间安全 • 上一篇    

一种主辅路径注意力补偿的脑卒中病灶分割方法

回海生(),张雪英,吴泽林(),李凤莲()   

  1. 太原理工大学 信息与计算机学院,山西 太原 030024
  • 收稿日期:2020-07-24 出版日期:2021-08-30 发布日期:2021-08-31
  • 作者简介:回海生(1985—),男,太原理工大学博士研究生,E-mail: huihaisheng@163.com|吴泽林(1998—),男,太原理工大学博士研究生,E-mail: nilezuw@126.com|李凤莲(1972—),女,教授,博士,E-mail: ghllfl@163.com
  • 基金资助:
    山西省重点研发计划(社会发展)(201803D31045);山西省自然科学基金(201801D121138);山西省回国留学人员科研资助项目(HGKY2019025)

Method for stroke lesion segmentation using the primary-auxiliary path attention compensation network

HUI Haisheng(),ZHANG Xueying,WU Zelin(),LI Fenglian()   

  1. College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China
  • Received:2020-07-24 Online:2021-08-30 Published:2021-08-31

摘要:

当脑卒中病灶特征不明显、病灶边界与正常脑组织区别度低的时候,基于自注意力机制的分割模型极易生成关注区域错误的注意力系数图,从而影响分割性能。针对此问题,基于所改进的全局注意力上采样U-Net模型,提出了一种主、辅路径注意力补偿网络结构。主路径网络负责进行精确病灶分割,并输出分割结果;辅路径网络生成宽松的辅助注意力补偿系数,其对主路径网络可能存在的注意力系数错误进行补偿。同时提出了两种混合损失函数,以实现主、辅路径网络各自的功能。实验证明,所改进的全局注意力上采样U-Net和所提出的主辅路径注意力补偿网络在分割性能上均有明显的提升。

关键词: 脑卒中, 分割, 深度学习, 卷积神经网络, 注意力

Abstract:

When the feature of stroke lesions is non-distinct,and the boundary between the lesions and the healthy brain tissue is difficult to distinguish,the segmentation model based on the self-attention mechanism is prone to generate a wrong attention coefficient map of the focus area,which affects the segmentation performance.To solve this problem,based on the global-attention-upsample attention U-Net (GAU-A-UNet),we propose a primary-auxiliary path attention compensation network (PAPAC-Net).The primary path network is responsible for accurate lesion segmentation and outputting the segmentation results while the auxiliary path network generates a tolerant auxiliary attention compensation coefficient to compensate for the primary path network’s potential attention coefficient map errors.Two compound loss functions are also proposed to realize the different functions for the primary and auxiliary path networks.Experimental results show that our GAU-A-UNet and PAPAC-Net both have a significant improvement in segmentation performance,which proves the effectiveness of our method.

Key words: stroke, segmentation, deep learning, convolutional neural networks, attention

中图分类号: 

  • TP391