西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (5): 15-22.doi: 10.19665/j.issn1001-2400.2021.05.003
收稿日期:
2021-05-31
出版日期:
2021-10-20
发布日期:
2021-11-09
通讯作者:
程培涛
作者简介:
张宇浩(1997—),男,西安电子科技大学硕士研究生,E-mail: 基金资助:
ZHANG Yuhao1(),CHENG Peitao1(),ZHANG Shuhao1(),WANG Xiumei2()
Received:
2021-05-31
Online:
2021-10-20
Published:
2021-11-09
Contact:
Peitao CHENG
摘要:
近年来,基于深度卷积神经网络的单幅图像超分辨率重建方法取得了令人瞩目的成果。基于像素级注意力网络的图像超分辨率重建方法能够在极小的参数量下获得良好的重建性能,是目前最先进的轻量化超分辨率重建方法之一。但是,受到各模块参数量的限制,像素级注意力网络训练缓慢和收敛条件苛刻的问题变得日益突出。针对这些问题,提出了一种基于自适应权重学习的轻量化超分辨率重建网络。该网络使用多个自适应权重模块组成非线性映射网络,每个模块能够提取到不同层级的特征信息,在每个自适应权重模块中,利用注意力分支和无注意力分支分别获取相应信息,再通过自适应权重融合分支进行整合。使用特定的卷积层拆分和融合两条分支,大幅降低了注意力分支和无注意力分支的参数量,使网络在参数量与性能之间达到相对平衡。在标准数据集上的实验证明,所提出方法在降低模型参数量的同时,峰值信噪比和结构相似度两种客观质量评价指标均优于同类先进方法,该方法能够重建更准确的纹理细节,得到更好的视觉效果,证明了该方法的有效性。
中图分类号:
张宇浩,程培涛,张书豪,王秀美. 一种自适应权重学习的轻量超分辨率重建网络[J]. 西安电子科技大学学报, 2021, 48(5): 15-22.
ZHANG Yuhao,CHENG Peitao,ZHANG Shuhao,WANG Xiumei. Lightweight image super-resolution with the adaptive weight learning network[J]. Journal of Xidian University, 2021, 48(5): 15-22.
表1
在Set5、Set14、BSD100和Urban100数据集上不同超分辨率重建方法的平均PSNR/SSIM"
方法 | 放大倍数 | 参数量 | Set5 (PSNR/SSIM) | Set14 (PSNR/SSIM) | BSD100 (PSNR/SSIM) | Urban100 (PSNR/SSIM) | |
---|---|---|---|---|---|---|---|
DRRN | ×2 | 298×103 | 37.74/0.959 1 | 33.23/0.913 6 | 32.05/0.897 3 | 31.23/0.918 8 | |
IDN | 553×103 | 37.83/0.960 0 | 33.30/0.914 8 | 32.08/0.898 5 | 31.27/0.919 6 | ||
CARN | 1 592×103 | 37.76/0.959 0 | 33.52/0.916 6 | 32.09/0.897 8 | 31.92/0.925 6 | ||
IMDN | 694×103 | 38.00/0.960 5 | 33.63/0.917 7 | 32.19/0.899 6 | 32.17/0.928 3 | ||
PAN | 261×103 | 37.95/0.960 7 | 33.59/0.917 3 | 32.15/0.900 1 | 31.97/0.927 0 | ||
LAWN | 454×103 | 38.03/0.961 0 | 33.64/0.918 3 | 32.19/0.900 5 | 32.17/0.928 4 | ||
DRRN | ×3 | 298×103 | 34.03/0.924 4 | 29.96/0.834 9 | 28.95/0.800 4 | 27.53/0.837 8 | |
IDN | 553×103 | 34.11/0.925 3 | 29.99/0.835 4 | 28.95/0.801 3 | 27.42/0.835 9 | ||
CARN | 1 592×103 | 34.29/0.925 5 | 30.29/0.840 7 | 29.06/0.803 4 | 28.06/0.849 3 | ||
IMDN | 703×103 | 34.36/0.927 0 | 30.32/0.841 7 | 29.09/0.804 6 | 28.17/0.851 9 | ||
PAN | 261×103 | 34.31/0.927 0 | 30.27/0.841 9 | 29.06/0.805 8 | 27.99/0.849 3 | ||
LAWN | 454×103 | 34.42/0.927 8 | 30.35/0.841 8 | 29.09/0.805 7 | 28.19/0.852 5 | ||
DRRN | ×4 | 298×103 | 31.68/0.888 8 | 28.21/0.772 0 | 27.38/0.728 4 | 25.44/0.763 8 | |
IDN | 553×103 | 31.82/0.890 3 | 28.25/0.773 0 | 27.41/0.729 7 | 25.41/0.763 2 | ||
CARN | 1 592×103 | 32.13/0.893 7 | 28.60/0.780 6 | 27.58/0.734 9 | 26.07/0.783 7 | ||
IMDN | 715×103 | 32.21/0.894 8 | 28.58/0.781 1 | 27.56/0.735 3 | 26.04/0.783 8 | ||
PAN | 272×103 | 31.77/0.891 3 | 28.39/0.778 7 | 27.45/0.734 1 | 25.64/0.772 1 | ||
LAWN | 465×103 | 32.21/0.896 4 | 28.56/0.781 7 | 27.56/0.737 3 | 26.11/0.786 8 |
[1] | 苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8):1202-1213. |
SU Heng, ZHOU Jie, ZHANG Zhihao. Survey of Super-Resolution Image Reconstruction Methods[J]. Acta Automatica Sinica, 2013, 39(8):1202-1213. | |
[2] | WANG Z H, CHEN J, HOI S C H. Deep Learning for Image Super-Rsolution:A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 45(10):3365-3387. |
[3] |
DONG C, LOY C C, HE K M, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281 |
[4] | KIM J, LEE J K, LEE K M. Deeply-Recursive Convolutional Network for Image Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:1637-1645. |
[5] | ZHANG Y L, LI K P, LI K, et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks[C]// Proceedings of the European Conference on Computer Vision (ECCV).Piscataway:IEEE, 2018:286-301. |
[6] | KIM J, LEE J K, LEEK M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:1646-1654. |
[7] | LIM B, SON S, KIM H, et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Piscataway:IEEE, 2017:136-144. |
[8] | ZHANG Y L, TIAN Y P, KONG Y, et al. Residual Dense Network for Image Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:2472-2481. |
[9] | TAI Y, YANG J, LIU X. Image Super-Resolution Bia Deep Recursive Residual Network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:3147-3155. |
[10] | 王世平, 毕笃彦, 刘坤, 等. 一种多映射卷积神经网络的超分辨率重建算法[J]. 西安电子科技大学学报, 2018, 45(4):155-160. |
WANG Shiping, BI Duyan, LIU Kun, et al. Multi-Mapping Convolution Neural Network for the Image Super-Resolution Algorithm[J]. Journal of Xidian University, 2018, 45(4):155-160. | |
[11] | SOH J W, CHO S, CHON I. Meta-Transfer Learning for Zero-Shot Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:3516-3525. |
[12] | ZHANG K, GOOL L V, TIMOFTE R. Deep Unfolding Network for Image Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:3217-3226. |
[13] | JO Y, KIM S J. Practical Single-Image Super-Resolution Using Look-Up Table[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:691-700. |
[14] | GU J, DONG C. Interpreting Super-Resolution Networks with Local Attribution Maps[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:9199-9208. |
[15] | SONG D, WANG Y, CHEN H, et al. Addersr:Towards Energy Efficient Image Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:15648-15657. |
[16] | HUI Z, LI J, WANG X, et al. Learning the Non-Differentiable Optimization for Blind Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:2093-2102. |
[17] | 刘树东, 王晓敏, 张艳. 一种对称残差CNN的图像超分辨率重建方法[J]. 西安电子科技大学学报, 2019, 46(5):15-23. |
LIU Shudong, WANG Xiaomin, ZHANG Yan. Symmetric Residual Convolution Neural Networks for the Image Super-Resolution Reconstruction[J]. Journal of Xidian University, 2019, 46(5):15-23. | |
[18] | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:624-632. |
[19] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely Connected Convolutional Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:4700-4708. |
[20] | HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:7132-7141. |
[21] | DAI T, CAI J, ZHANG Y, et al. Second-Order Attention Network for SingleImage Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:11065-11074. |
[22] | ZHANG Y, LI K, LI K, et al. Residual Non-local Attention Networks for Image Restoration[EB/OL]. [2019-03-24]. https://arxiv.org/pdf/1903.10082.pdf. |
[23] | WANG X, GIRSHICK R, GUPTA A, et al. Non-Local Neural Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:7794-7803. |
[24] | NIU B, WEN W, REN W, et al. Single Image Super-Resolution via a Holistic Attention Network[C]// European Conference on Computer Vision.Berlin:Springer, 2020:191-207. |
[25] | AHN N, KANG B, SOHN K A. Fast,Accurate,and Lightweight Super-Resolution with Cascading Residual Network[C]// Proceedings of the European Conference on Computer Vision.Berlin:Springer, 2018:252-268. |
[26] | HUI Z, WANG X, GAOG X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:723-731. |
[27] | HUI Z, GAO X, YANG Y, et al. Lightweight Image Super-Resolution with Information Multi-Distillation Network[C]// Proceedings of the 27th ACM International Conference on Multimedia.New York:ACM, 2019:2024-2032. |
[28] | TAI Y, YANG J, LIU X, et al. Memnet:A Persistent Memory Network for Image Restoration[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017:4539-4547. |
[29] | ZHAO H, KONG X, HE J, et al. Efficient Image Super-Resolution Using Pixel Attention[C]// European Conference on Computer Vision.Berlin:Springer, 2020:56-72. |
[30] | CHEN H, GU J, ZHANG Z. Attention in Attention Network for Image Super-Resolution[EB/OL]. [2021-04-19] et al. https://arxiv.org/pdf/2104.09497.pdf. |
[31] | CHEN Y, DAI X, LIU M, et al. Dynamic Convolution:Attention over Convolution Kernels[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:11030-11039. |
[32] | AGUSTSSON E, TIMOFTE R. Ntire 2017 Challenge on Single Image Super-Resolution:Dataset and Study[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Piscataway:IEEE, 2017:126-135. |
[33] | BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-Complexity Single-Image Super-Resolution Based on Nonnegative Neighbor Embedding[C]// Proceedings of the 23rd British Machine Vision Conference.Surrey:BMVA, 2012: 135. |
[34] | ZEYDE R, ELAD M, PROTTER M. On Single Image Scale-Up Using Sparse-Representations[C]// International Conference on Curves and Surfaces.Berlin:Springer, 2010:711-730. |
[35] | MARTIN D, FOWLKES C, TALS D, et al. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[C]// Proceedings Eighth IEEE International Conference on Computer Vision.Piscataway:IEEE, 2001:416-423. |
[36] | HUANG J B, SINGH A, AHUJA N. Single Image Super-Resolution from Transformed Self-Exemplars[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2015:5197-5206. |
[37] |
WANG Z, BOVIK A C, SHEIKHH R, et al. Image Quality Assessment:from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
doi: 10.1109/TIP.2003.819861 |
[1] | 李源,崔玉爽,王伟. 一种基于字词双通道网络的文本情感分析方法[J]. 西安电子科技大学学报, 2021, 48(6): 179-186. |
[2] | 刘佳玮,张文辉,寇晓丽,李雁妮. 增强型深度对抗样本攻击防御算法[J]. 西安电子科技大学学报, 2021, 48(6): 23-31. |
[3] | 于浩洋,尹良,李书芳,吕顺. 生成对抗网络小样本雷达调制信号识别算法[J]. 西安电子科技大学学报, 2021, 48(6): 96-104. |
[4] | 董如婵,焦李成,赵进,沈维燕. 一种深度融合机制的遥感图像目标检测技术[J]. 西安电子科技大学学报, 2021, 48(5): 128-138. |
[5] | 李鹏,冯存前,许旭光,唐子翔. 一种利用贝叶斯优化的弹道目标微动分类网络[J]. 西安电子科技大学学报, 2021, 48(5): 139-148. |
[6] | 孙彦景,魏力,张年龙,云霄,董锴文,葛敏,程小舟,侯晓峰. 联合DD-GAN和全局特征的井下人员重识别方法[J]. 西安电子科技大学学报, 2021, 48(5): 201-211. |
[7] | 闫佳,曹玉东,任佳兴,陈冬昊,李晓会. 深度非对称压缩型哈希算法[J]. 西安电子科技大学学报, 2021, 48(5): 212-221. |
[8] | 宁阳,杜建超,韩硕,杨传凯. 改进DeeplabV3+的火焰分割与火情分析方法[J]. 西安电子科技大学学报, 2021, 48(5): 38-46. |
[9] | 周鹏,杨军. 采用神经网络架构搜索的遥感影像分割方法[J]. 西安电子科技大学学报, 2021, 48(5): 47-57. |
[10] | 戚艳军,孔月萍,王佳婧,朱旭东. 一种LSTM与CNN相结合的步态识别方法[J]. 西安电子科技大学学报, 2021, 48(5): 78-85. |
[11] | 杨云航,闵连权. 采用空洞卷积的多尺度融合草图识别模型[J]. 西安电子科技大学学报, 2021, 48(5): 92-99. |
[12] | 陈昌川,王海宁,黄炼,黄涛,李连杰,黄向康,代少升. 一种基于局部表征的面部表情识别算法[J]. 西安电子科技大学学报, 2021, 48(5): 100-109. |
[13] | 宋建锋,苗启广,王崇晓,徐浩,杨瑾. 注意力机制的多尺度单目标跟踪算法[J]. 西安电子科技大学学报, 2021, 48(5): 110-116. |
[14] | 回海生,张雪英,吴泽林,李凤莲. 一种主辅路径注意力补偿的脑卒中病灶分割方法[J]. 西安电子科技大学学报, 2021, 48(4): 200-208. |
[15] | 宋剑桥,王峰,牛锦,师泽洲,马军辉. 一种面向时空神经网络的潜在情绪识别方法[J]. 西安电子科技大学学报, 2021, 48(4): 159-167. |
|