[1] |
苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8):1202-1213.
|
|
SU Heng, ZHOU Jie, ZHANG Zhihao. Survey of Super-Resolution Image Reconstruction Methods[J]. Acta Automatica Sinica, 2013, 39(8):1202-1213.
|
[2] |
WANG Z H, CHEN J, HOI S C H. Deep Learning for Image Super-Rsolution:A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 45(10):3365-3387.
|
[3] |
DONG C, LOY C C, HE K M, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281
|
[4] |
KIM J, LEE J K, LEE K M. Deeply-Recursive Convolutional Network for Image Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:1637-1645.
|
[5] |
ZHANG Y L, LI K P, LI K, et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks[C]// Proceedings of the European Conference on Computer Vision (ECCV).Piscataway:IEEE, 2018:286-301.
|
[6] |
KIM J, LEE J K, LEEK M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:1646-1654.
|
[7] |
LIM B, SON S, KIM H, et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Piscataway:IEEE, 2017:136-144.
|
[8] |
ZHANG Y L, TIAN Y P, KONG Y, et al. Residual Dense Network for Image Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:2472-2481.
|
[9] |
TAI Y, YANG J, LIU X. Image Super-Resolution Bia Deep Recursive Residual Network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:3147-3155.
|
[10] |
王世平, 毕笃彦, 刘坤, 等. 一种多映射卷积神经网络的超分辨率重建算法[J]. 西安电子科技大学学报, 2018, 45(4):155-160.
|
|
WANG Shiping, BI Duyan, LIU Kun, et al. Multi-Mapping Convolution Neural Network for the Image Super-Resolution Algorithm[J]. Journal of Xidian University, 2018, 45(4):155-160.
|
[11] |
SOH J W, CHO S, CHON I. Meta-Transfer Learning for Zero-Shot Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:3516-3525.
|
[12] |
ZHANG K, GOOL L V, TIMOFTE R. Deep Unfolding Network for Image Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:3217-3226.
|
[13] |
JO Y, KIM S J. Practical Single-Image Super-Resolution Using Look-Up Table[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:691-700.
|
[14] |
GU J, DONG C. Interpreting Super-Resolution Networks with Local Attribution Maps[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:9199-9208.
|
[15] |
SONG D, WANG Y, CHEN H, et al. Addersr:Towards Energy Efficient Image Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:15648-15657.
|
[16] |
HUI Z, LI J, WANG X, et al. Learning the Non-Differentiable Optimization for Blind Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2021:2093-2102.
|
[17] |
刘树东, 王晓敏, 张艳. 一种对称残差CNN的图像超分辨率重建方法[J]. 西安电子科技大学学报, 2019, 46(5):15-23.
|
|
LIU Shudong, WANG Xiaomin, ZHANG Yan. Symmetric Residual Convolution Neural Networks for the Image Super-Resolution Reconstruction[J]. Journal of Xidian University, 2019, 46(5):15-23.
|
[18] |
LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:624-632.
|
[19] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely Connected Convolutional Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:4700-4708.
|
[20] |
HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:7132-7141.
|
[21] |
DAI T, CAI J, ZHANG Y, et al. Second-Order Attention Network for SingleImage Super-Resolution[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:11065-11074.
|
[22] |
ZHANG Y, LI K, LI K, et al. Residual Non-local Attention Networks for Image Restoration[EB/OL]. [2019-03-24]. https://arxiv.org/pdf/1903.10082.pdf.
|
[23] |
WANG X, GIRSHICK R, GUPTA A, et al. Non-Local Neural Networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:7794-7803.
|
[24] |
NIU B, WEN W, REN W, et al. Single Image Super-Resolution via a Holistic Attention Network[C]// European Conference on Computer Vision.Berlin:Springer, 2020:191-207.
|
[25] |
AHN N, KANG B, SOHN K A. Fast,Accurate,and Lightweight Super-Resolution with Cascading Residual Network[C]// Proceedings of the European Conference on Computer Vision.Berlin:Springer, 2018:252-268.
|
[26] |
HUI Z, WANG X, GAOG X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:723-731.
|
[27] |
HUI Z, GAO X, YANG Y, et al. Lightweight Image Super-Resolution with Information Multi-Distillation Network[C]// Proceedings of the 27th ACM International Conference on Multimedia.New York:ACM, 2019:2024-2032.
|
[28] |
TAI Y, YANG J, LIU X, et al. Memnet:A Persistent Memory Network for Image Restoration[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017:4539-4547.
|
[29] |
ZHAO H, KONG X, HE J, et al. Efficient Image Super-Resolution Using Pixel Attention[C]// European Conference on Computer Vision.Berlin:Springer, 2020:56-72.
|
[30] |
CHEN H, GU J, ZHANG Z. Attention in Attention Network for Image Super-Resolution[EB/OL]. [2021-04-19] et al. https://arxiv.org/pdf/2104.09497.pdf.
|
[31] |
CHEN Y, DAI X, LIU M, et al. Dynamic Convolution:Attention over Convolution Kernels[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:11030-11039.
|
[32] |
AGUSTSSON E, TIMOFTE R. Ntire 2017 Challenge on Single Image Super-Resolution:Dataset and Study[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Piscataway:IEEE, 2017:126-135.
|
[33] |
BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-Complexity Single-Image Super-Resolution Based on Nonnegative Neighbor Embedding[C]// Proceedings of the 23rd British Machine Vision Conference.Surrey:BMVA, 2012: 135.
|
[34] |
ZEYDE R, ELAD M, PROTTER M. On Single Image Scale-Up Using Sparse-Representations[C]// International Conference on Curves and Surfaces.Berlin:Springer, 2010:711-730.
|
[35] |
MARTIN D, FOWLKES C, TALS D, et al. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics[C]// Proceedings Eighth IEEE International Conference on Computer Vision.Piscataway:IEEE, 2001:416-423.
|
[36] |
HUANG J B, SINGH A, AHUJA N. Single Image Super-Resolution from Transformed Self-Exemplars[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2015:5197-5206.
|
[37] |
WANG Z, BOVIK A C, SHEIKHH R, et al. Image Quality Assessment:from Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
doi: 10.1109/TIP.2003.819861
|