西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (5): 38-46.doi: 10.19665/j.issn1001-2400.2021.05.006

• • 上一篇    下一篇

改进DeeplabV3+的火焰分割与火情分析方法

宁阳1(),杜建超1(),韩硕1(),杨传凯2()   

  1. 1.西安电子科技大学 通信工程学院,陕西 西安 710071
    2.国网陕西省电力公司 电力科学研究院,陕西 西安 710100
  • 收稿日期:2021-04-12 出版日期:2021-10-20 发布日期:2021-11-09
  • 作者简介:宁 阳(1997—),男,西安电子科技大学硕士研究生,E-mail: yangning23@126.com|杜建超(1977—),男,副教授,博士,E-mail: jcdu@xidian.edu.cn|韩 硕(1991—),女,西安电子科技大学硕士研究生,E-mail: hanshuo1991sure@163.com|杨传凯(1986—),男,高级工程师,博士,E-mail: 376036930@qq.com
  • 基金资助:
    陕西省重点研发计划(2020GY-058)

Fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development

NING Yang1(),DU Jianchao1(),HAN Shuo1(),YANG Chuankai2()   

  1. 1. School of Telecommunications Engineering,Xidian University,Xi’an 710071,China
    2. Electric Power Research Institute of State Grid,Shaanxi Electric Power Company,Xi’an 710100,China
  • Received:2021-04-12 Online:2021-10-20 Published:2021-11-09

摘要:

火焰检测与火势发展分析对火情的控制十分重要。提出一种改进DeeplabV3+的火焰分割与火情分析方法:首先在DeeplabV3+的解码器部分增加低层特征来源,将其与高层特征融合后采用2倍上采样逐步恢复图像尺寸,保留更多的细节信息,实现更加准确的火焰分割;然后将火焰视频每帧分割得到的像素数组成火势发展序列,基于关键点对序列进行分段和线性拟合,获取火势发展的关键趋势。实验结果表明,所提方法可以在对火焰进行准确分割的基础上,有效地分析火情发展态势,为火情的检测与控制提供有效的帮助。

关键词: 深度学习, 火焰分割, DeeplabV3+, 火情分析

Abstract:

Fire detection and development analysis are significant for fire control.The fire segmentation based on the improved DeeplabV3+ and the analytical method for fire development are proposed:First,the low-level feature sources are added to the decoder of the DeeplabV3+,which is fused with high-level features,and the image size is gradually recovered by 2 times up sampling to retain more details and achieve more accurate fire segmentation.Then,the number of pixels obtained by each fire video frame is combined into a fire series,and key points are used to segment and linearly fit the series to obtain the key trend of fire development.Experimental results show that the proposed method can effectively analyze the fire development situation on the basis of accurate fire segmentation,and provide an effective help for fire detection and control.

Key words: deep learning, fire segmentation, deeplabV3+, fire analysis

中图分类号: 

  • TP391