西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (5): 47-57.doi: 10.19665/j.issn1001-2400.2021.05.007

• • 上一篇    下一篇

采用神经网络架构搜索的遥感影像分割方法

周鹏1(),杨军2()   

  1. 1.兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
    2.兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070
  • 收稿日期:2021-05-19 出版日期:2021-10-20 发布日期:2021-11-09
  • 通讯作者: 杨军
  • 作者简介:周鹏(1982—),男,兰州交通大学博士研究生,E-mail: zhoupeng@mail.lzjtu.cn
  • 基金资助:
    国家自然科学基金(61862039);甘肃省科技计划(20JR5RA429);甘肃省高等学校创新基金(2020B-116);兰州市人才创新创业项目(2020-RC-22);兰州交通大学天佑创新团队(TY202002)

Semantic segmentation of remote sensing images based on neural architecture search

ZHOU Peng1(),YANG Jun2()   

  1. 1. School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2. Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China
  • Received:2021-05-19 Online:2021-10-20 Published:2021-11-09
  • Contact: Jun YANG

摘要:

由于传统的深度卷积神经网络分割高分辨率遥感影像需人工设计网络架构,过度依赖专家经验,耗时费力,且网络泛化能力较差,因此,提出一种资源平衡型部分通道采样的神经网络架构搜索方法。首先,在网络架构参数中添加资源平衡项,提升搜索算法稳定性,同时减小剪枝过程中产生的更新不平衡和离散化误差;其次,选择部分通道进行搜索空间的混合操作,以节省计算资源,提升搜索效率,缓解网络过拟合;最后,根据高分辨率遥感影像地物复杂、分布离散及空间范围广等特点,引入Gumbel-Softmax Trick方法从非连续概率分布进行采样,以提高采样效率。在WHUBuilding数据集上MIoU语义分割评价指标达到90.93%,在GID数据集上MIoU语义分割评价指标达到69.53%,优于SegNet、U-Net、Deeplab v3+、NAS-HRIS等网络模型。实验结果表明,新方法能高效地自动搜索出分割高分辨率遥感影像的网络架构,具有分割精度高、计算资源占用率低的特点。

关键词: 深度学习, 高分辨率遥感影像, 神经网络架构搜索, 影像分割, 卷积神经网络

Abstract:

High-resolution remote sensing image segmentation based on the traditional deep convolutional neural network needs hand-crafted architectures,which is excessively dependent on expert experience,time-consuming and laborious,and the network generalization ability is poor.A neural network architecture search method of resource balanced partial channel sampling is presented in this study.First,the resource-balanced strategy is added to the network architecture parameter to minimize the updating imbalances and discretization discrepancy during pruning,so the stability of the search algorithm is improved.Second,the partial channel is sampled for the mixed operation in search space,which can effectively reduce the computing cost,improve the search efficiency and alleviate the problem of network overfitting.Finally,according to the characteristic of complex features,the discrete distribution and the wide spatial range of high resolution remote sensing images,the Gumbel-Softmax trick is introduced to improve the sampling efficiency and make the sampling process backpropagate.The proposed method can achieve 90.93% and 69.53% MIoU on the WHUBuilding and GID dataset,respectively,which outperforms the prior work like SegNet,U-Net,Deeplab v3+ and NAS-HRIS.Experimental results show that this proposed method can help search the architecture for high resolution remote sensing image segmentation efficiently and automatically,and has the advantages of a high segmentation accuracy and low computing resources.

Key words: deep learning, high-resolution remote sensing, network architecture search, image segmentation, convolutional neural network

中图分类号: 

  • TP391