[1] |
REN S, HE K, GIRSHICK R, et al. FasterR-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
|
[2] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single Shot Multibox Detector[C]// European Conference on Computer Vision.Heidelberg:Springer, 2016:21-37.
|
[3] |
ZHANG S, WEN L, BIAN X, et al. Single-Shot Refinement Neural Network for Object Detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:4203-4212.
|
[4] |
ZHENG Q, LI Z, ZHANG Z, et al. ThunderNet:Towards Real-Time Generic Object Detection on Mobile Devices[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2019:6717-6726.
|
[5] |
TAN M, PANG R, LE Q V. EfficientDet:Scalable and Efficient Object Detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2020:10781-10790.
|
[6] |
TIAN Y, PING L, WANG X, et al. Deep Learning Strong Parts for Pedestrian Detection[C]// IEEE International Conference on Computer Vision.Piscataway:IEEE, 2016:1904-1912.
|
[7] |
MAO J, XIAO T, JIANG Y, et al. WhatCan Help Pedestrian Detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:6034-6043.
|
[8] |
WANG X, XIAO T, JIANG Y, et al. Repulsion Loss:Detecting Pedestrians in a Crowd[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2018:7774-7783.
|
[9] |
CHI C, ZHANG S, XING J, et al. PedHunter:Occlusion Robust Pedestrian Detector in Crowded Scenes[C]// Proceedings of the AAAI Conference on Artificial Intelligence.Palo Alto:AAAI, 2020:10639-10646.
|
[10] |
汪昱东, 郭继昌, 王天保. 一种改进的雾天图像行人和车辆检测算法[J]. 西安电子科技大学学报, 2020, 47(4):70-77.
|
|
WANG Yudong, GUO Jichang, WANG Tianbao. Algorithm for Foggy-Image Pedestrian and Vehicle Detection[J]. Journal of Xidian University, 2020, 47(4):70-77.
|
[11] |
TESEMA F B, WU H, CHEN M, et al. Hybrid Channel Based Pedestrian Detection[J]. Neurocomputing, 2020, 389:1-8.
doi: 10.1016/j.neucom.2019.12.110
|
[12] |
SZEGEDY C, WEI L, JIA Y, et al. Going Deeper with Convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2015:1-9.
|
[13] |
YU F, KOLTUN V. Multi-Scale Context Aggregation by Dilated Convolutions[C]// International Conference on Learning Representations.Amsterdam:Elsevier, 2016:1511-1524.
|
[14] |
YAO B, LI F F. Grouplet:A Structured Image Representation for Recognizing Human and Object Interactions[C]// 2010 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2010:9-16.
|
[15] |
GKIOXARI G, GIRSHICK R, MALIK J. ContextualAction Recognition with R*CNN[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2015:1080-1088.
|
[16] |
YUN S, HAN D, CHUN S, et al. CutMix:Regularization Strategy to Train Strong Classifiers with Localizable Features[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2019:6022-6031.
|