西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (5): 78-85.doi: 10.19665/j.issn1001-2400.2021.05.010

• • 上一篇    下一篇

一种LSTM与CNN相结合的步态识别方法

戚艳军1,2(),孔月萍1,3(),王佳婧3(),朱旭东3()   

  1. 1.西安建筑科技大学 机电工程学院,陕西 西安 710055
    2.西北政法大学 商学院,陕西 西安 710063
    3.西安建筑科技大学 信息与控制工程学院,陕西 西安 710055
  • 收稿日期:2020-07-18 出版日期:2021-10-20 发布日期:2021-11-09
  • 通讯作者: 孔月萍
  • 作者简介:戚艳军(1974—),女,副教授,西安建筑科技大学博士研究生,E-mail: qiyanjun0605@163.com|王佳婧(1984—),女,讲师,博士,E-mail: 27463324@qq.com|朱旭东(1973—),男,副教授,博士,E-mail: zhudongxu@qq.sina.com
  • 基金资助:
    国家重点研发计划(2019YFD1100901);陕西省自然科学基金(2019JM-183)

Gait recognition method combining LSTM and CNN

QI Yanjun1,2(),KONG Yueping1,3(),WANG Jiajing3(),ZHU Xudong3()   

  1. 1. School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology, Xi’an 710055,China
    2. School of Business,Northwest University of Political Science and Law,Xi’an 710063,China
    3. School of Information and Control Engineering,Xi’an University of Architecture and Technology, Xi’an 710055,China
  • Received:2020-07-18 Online:2021-10-20 Published:2021-11-09
  • Contact: Yueping KONG

摘要:

针对行人运动过程中拍摄视角、外观变化等因素对步态识别的影响,提出一种长短时记忆网络与卷积神经网络相结合的步态识别方法。该方法首先使用人体三维姿态估计直接获得人体关节的三维坐标;然后根据三维空间中关节之间的周期性运动约束关系,从时间和空间两个维度构建视角鲁棒的三维步态约束模型。其中,模型中的运动约束矩阵用于表征关节运动及人体结构的时序约束特征;动作特征矩阵用于表征关节位移的空间约束特征。接着针对所构建的三维步态约束模型的特点,设计了长短时记忆网络与卷积神经网络相结合的并行网络,学习运动约束矩阵和动作特征矩阵中的步态时空特征。最后,在多视角步态数据库CASIA-B中对网络模型进行了评估。实验结果表明,该方法的识别率高于一些经典的方法,而且在视角变化较大的情况下,识别率没有显著下降,说明构建的步态模型对视角变化具有较高的鲁棒性。

关键词: 深度学习, 步态识别, 人体姿态, 姿态特征矩阵

Abstract:

To solve the problem of influence factors such as view angle and other external factors of variation on gait recognition,we propose a novel and practical gait recognition method combining Long Short Term Memory and Convolutional Neural Networks.Focusing on the three-dimensionality of gait,the new method uses human three-dimensional (3D) pose estimation to obtain 3D coordinates of joints.Then,by analyzing the periodic motion constraint relationships between joints in 3D space,a robust 3D gait constraint model is designed from time and space dimensions.In the model,the motion constraint matrix characterizes both the temporal constraint relationships between joint motion and human body structure,while the action feature matrix characterizes the spatial constraint relationships of the joint position.In addition,based on the characteristics of the 3D gait constraint model,a parallel deep gait recognition network consisting of Long Short Term Memory and Convolutional Neural Networks is developed to extract spatiotemporal features of the model.Finally,the proposed method is evaluated on multi-view gait database CASIA-B.Experimental results show that the recognition rate of the new method is higher than that of some classic methods.At the same time,the recognition rate does not decrease significantly in the case of great view angle changes,illustrating that our method has a state-of-the-art performance and is robust to view changes.

Key words: deep learning, gait recognition, human body pose, pose feature matrix

中图分类号: 

  • TP391