[1] |
BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4:Optimal Speed and Accuracy of Object Detection (2020)[J/OL]. [2020-04-23]. https://arxiv.org/pdf/2004.10934v1.pdf.
|
[2] |
GIRSHICK R. Fast R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2019:510-519.
|
[3] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2014:580-587.
|
[4] |
HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):386-397.
doi: 10.1109/TPAMI.34
|
[5] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single Shot MultiBox Detector[C]// European Conference on Computer Vision.Heidelberg:Springer, 2016:21-37.
|
[6] |
HE K, ZHANG X, REN S, et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
doi: 10.1109/TPAMI.2015.2389824
|
[7] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once:Unified,Real-Time Object Detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:779-788.
|
[8] |
REDMON J, FARHADI A. YOLO9000:Better,Faster,Stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:6517-6525.
|
[9] |
REDMON J, FARHADI A. YOLOv3:An Incrementalx Improvement (2018)[J/OL]. [2018-04-08]. https://arxiv.org/pdf/1804.02767.pdf.
|
[10] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
|
[11] |
崔艳鹏, 王元皓, 胡建伟. 一种改进YOLOv3的动态小目标检测方法[J]. 西安电子科技大学学报, 2020, 47(3):1-7.
|
|
CUI Yanpeng, WANG Yuanhao, HU Jianwei. Detection Method for a Dynamic Small Target Using the Improved YOLOv3[J]. Journal of Xidian University, 2020, 47(3):1-7.
|
[12] |
汪昱东, 郭继昌, 王天保. 一种改进的雾天图像行人和车辆检测算法[J]. 西安电子科技大学学报, 2020, 47(4):70-77.
|
|
WANG Yudong, GUO Jichang, WANG Tianbao. Algorithm for Foggy-Image Pedestrian and Vehicle Detection[J]. Journal of Xidian University, 2020, 47(4):70-77.
|
[13] |
LIN T, GOYAL P, GIRSHICK R, et al. Focal Loss for Dense Object Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327.
doi: 10.1109/TPAMI.34
|
[14] |
LONG Y, GONG Y, XIAO Z, et al. Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks[J]. IEEE Transactions on Geoscience Remote Sensing, 2017, 55(5):2486-2498.
doi: 10.1109/TGRS.36
|
[15] |
CHENG G, ZHOU P, HAN J. RIFD-CNN:Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:2884-2893.
|
[16] |
CHENG G, HAN J, ZHOU P, et al. Multi-Class Geospatial Object Detection and Geographic Image Classification Based on Collection of Part Detectors[J]. ISPRS Journal of Photogrammetry Remote Sensing, 2014, 98:119-132.
doi: 10.1016/j.isprsjprs.2014.10.002
|
[17] |
CHENG G, HAN J. A Survey on Object Detection in Optical Remote Sensing Images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:11-28.
doi: 10.1016/j.isprsjprs.2016.03.014
|
[18] |
DENG Z, SUN H, ZHOU S, et al. Multi-Scale Object Detection in Remote Sensing Imagery with Convolutional Neural Networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145:3-22.
doi: 10.1016/j.isprsjprs.2018.04.003
|
[19] |
GUO W, YANG W, ZHANG H, et al. Geospatial Object Detection in High Resolution Satellite Images Based on Multi-Scale Convolutional Neural Network[J]. Remote Sensing, 2018, 10:131.
doi: 10.3390/rs10010131
|
[20] |
WOO S, PARK J, LEE J, et al. CBAM:Convolutional Block Attention Module[C]// European Conference on Computer Vision.Heidelberg:Springer, 2018:3-19.
|
[21] |
ZOU F, XIAO W, JI W, et al. Arbitrary-Oriented Object Detection via Dense Feature Fusion and Attention Model for Remote Sensing Super-Resolution Image[J]. Neural Computing Applications, 2020, 32(6):14549-14562.
doi: 10.1007/s00521-020-04893-9
|
[22] |
WANG C, BAI X, WANG S, et al. Multiscale Visual Attention Networks for Object Detection in VHR Remote Sensing Images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2):310-314.
doi: 10.1109/LGRS.2018.2872355
|
[23] |
CHEN C L P, LIU Z. Broad Learning System:An Effective and Efficient Incremental Learning System without the Need for Deep Architecture[J]. IEEE Transactions on Neural Networks Learning Systems, 2018, 29(1):10-24.
doi: 10.1109/TNNLS.5962385
|
[24] |
KONG Y, WANG X, CHENG Y, et al. Hyperspectral Imagery Classification Based on Semi-Supervised Broad Learning System[J]. Remote Sensing, 2018, 10(5):685-692.
doi: 10.3390/rs10050685
|
[25] |
DONG R, XU D, JIAO L, et al. A Fast Deep Perception Network for Remote Sensing Scene Classification[J]. Remote Sensing, 2020, 12(4):729.
doi: 10.3390/rs12040729
|
[26] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:770-778.
|
[27] |
ZAGORUYKO S, KOMODAKIS N. Paying More Attention to Attention:Improving the Performance of Convolutional Neural Networks via Attention Transfer(2016)[J/OL]. [2016-12-12]. https://arxiv.org/pdf/1612.03928.pdf.
|
[28] |
ELSKEN T, METZEN J H, HUTTER F. Neural Architecture Search:A Survey (2018)[J/OL]. [2018-08-16]. https://arxiv.org/pdf/1808.05377.pdf.
|
[29] |
CHEN C P, LIU Z. Broad Learning System:An Effective and Efficient Incremental Learning System without the Need for Deep Architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1):10-24.
doi: 10.1109/TNNLS.5962385
|
[30] |
SIGOP T. Bayesian Optimization Primer(2020)[EB/OL]. [2020-09-30]. https://sigopt.com/research.
|
[31] |
ZOU Z, SHI Z. Random Access Memories:A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images[J]. IEEE Transactions on Image Processing, 2018, 27(3):1100-1111.
doi: 10.1109/TIP.2017.2773199
|
[32] |
CHENG G, ZHOU P, HAN J. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7405-7415.
doi: 10.1109/TGRS.2016.2601622
|
[33] |
DONG R, XU D, ZHAO J, et al. Sig-NMS-Based Faster R-CNN Combining Transfer Learning for Small Target Detection in VHR Optical Remote Sensing Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):8534-8545.
doi: 10.1109/TGRS.36
|
[34] |
XU Z, XU X, WANG L, et al. Deformable ConvNet with Aspect Ratio Constrained NMS for Object Detection in Remote Sensing Imagery[J]. Remote Sensing, 2017, 9(12):1312-1330.
doi: 10.3390/rs9121312
|
[35] |
HAN X, ZHONG Y, ZHANG L. An Efficient and Robust Integrated Geospatial Object Detection Framework for High Spatial Resolution Remote Sensing Imagery[J]. Remote Sensing, 2017, 9(7):666-687.
doi: 10.3390/rs9070666
|