西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (5): 128-138.doi: 10.19665/j.issn1001-2400.2021.05.016

• • 上一篇    下一篇

一种深度融合机制的遥感图像目标检测技术

董如婵1,2(),焦李成3(),赵进4(),沈维燕1()   

  1. 1.金陵科技学院 软件工程学院,江苏 南京 211169
    2.江苏省软件测试工程实验室,江苏 南京 211169
    3.西安电子科技大学 智能感知与图像理解教育部重点实验室,陕西 西安 710071
    4.西安交通大学 数学与统计学院,陕西 西安 710049
  • 收稿日期:2021-07-15 出版日期:2021-10-20 发布日期:2021-11-09
  • 作者简介:董如婵(1980—),女,讲师,博士,E-mail: ruchandong@jit.edu.cn|焦李成(1959—),男,教授,E-mail: lchjiao@mail.xidian.edu.cn|赵 进(1986—),男,助理教授,博士,E-mail: zhaojindl@xjtu.edu.cn|沈维燕(1982—),女,讲师,硕士,E-mail: shenweiyan@jit.edu.cn
  • 基金资助:
    国家自然科学基金(61902163);国家自然科学基金青年项目(62006177);江苏省现代教育技术研究课题(2021-R-89410);江苏省现代教育技术研究课题(2014-R-31278)

Application of the deep fusion mechanism in object detection of remote sensing images

DONG Ruchan1,2(),JIAO Licheng3(),ZHAO Jin4(),SHEN Weiyan1()   

  1. 1. School of Software Engineering,Jinling Institute of Technology,Nanjing 211169,China
    2. Software Testing Engineering Laboratory of Jiangsu Province,Nanjing 211169,China
    3. Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China,Xidian University,Xi’an 710071,China
    4. School of Mathematics and Statistics,Xi’an JiaoTong University,Xi’an 710049,China
  • Received:2021-07-15 Online:2021-10-20 Published:2021-11-09

摘要:

遥感图像覆盖幅面广、纹理信息丰富,其目标具有尺寸多样性,排列密集且与背景易混淆等特性,给快速定位和精准识别目标带来较多困难,尤其是易漏检小目标等。针对此问题,提出一种深度融合机制的遥感图像目标检测技术。该技术基于深度卷积神经网络,将多尺度、注意力机制与宽度学习三者融合,用于遥感图像目标检测技术。该技术首先基于多尺度与空间注意力机制获取到遥感图像的候选区域信息,然后采用通道注意力机制获取其多个尺度的特征信息并融合互补,旨在有效聚焦图像深层的高层语义信息和底层的小目标特征信息;最后,针对宽度学习存在超参数的确定需要依据不同的遥感图像,进行手工调参问题,提出基于贝叶斯网络搜索优化策略的宽度学习方法。该方法可智能地学习到一组适应于不同遥感图像数据集的超参数,对目标进行高效识别。实验结果证明,与当前先进的方法相比,该算法能够有效解决遥感图像目标检测中速度慢、精度低、易丢失小目标等问题,提升目标检测的准确率。

关键词: 深度卷积神经网络, 遥感图像, 注意力机制, 宽度学习, 目标检测

Abstract:

A new target detection technology for remote sensing images based on the deep fusion mechanism is proposed,which combines the multi-scale,attention mechanism and broad learning system based on the deep convolutional neural network.This technology focuses effectively on the high-level semantic information of remote sensing images and the characteristics of small targets.Because of the problem of manual adjustment of hyperparameters in the broad learning system,the author proposes a broad learning system based on the Bayesian network search,which can learn intelligently.A set of parameter values applicable to different remote sensing images can efficiently identify targets.Compared with other state-of-the-art methods,experimental results show that this technology can effectively solve the problems of a slow detection speed,a low recognition accuracy,and small targets in remote sensing image target detection tasks.

Key words: deep convolution neural network, remote sensing image, attention mechanism, broad learning system, object detection

中图分类号: 

  • TP391.41