[1] |
CHEN V C. Analysis of Radar Micro-Doppler with Time-Frequency Transform[C]// Proceedings of the 10th IEEE Workshop on Statistical Signal and Array Processing.Piscataway:IEEE, 2000:463-466.
|
[2] |
马梁. 弹道中段目标微动特性及综合识别方法[D]. 长沙:国防科学技术大学, 2011.
|
[3] |
陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1):123-134.
|
|
CHEN Xiaolong, GUAN Jian, HE You. Application and Prospect of Micro-Motion Theory in the Detection of Sea Surface Target[J]. Journal of Radars, 2013, 2(1):123-134.
|
[4] |
韩勋, 杜兰, 刘宏伟, 等. 基于时频分布的空间锥体目标微动形式分类[J]. 系统工程与电子技术, 2013, 35(4):684-691.
|
|
HAN Xun, DU Lan, LIU Hongwei, et al. Classification of Micro-Motion Form of Space Cone-Shaped Objects Based on Time-Frequency Distribution[J]. System Engineering and Electronics, 2013, 35(4):684-691.
|
[5] |
关永胜, 左群声, 刘宏伟, 等. 空间锥体目标微动特性分析与识别方法[J]. 西安电子科技大学学报, 2011, 38(2):105-111.
|
|
GUAN Yongsheng, ZUO Qunsheng, LIU Hongwei, et al. Micro-Motion Characteristic Analysis and Recognition of Cone-Shaped Targets[J]. Journal of Xidian University, 2011, 38(2):105-111.
|
[6] |
束长勇, 张生俊, 黄沛霖, 等. 基于微多普勒的空间锥体目标微动分类[J]. 北京航空航天大学学报, 2017, 43(7):1387-1394.
|
|
SHU Changyong, ZHANG Shengjun, HUANG Peilin, et al. Micro-Motion Classification of Spatial Cone Target Based on Micro-Doppler[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(7):1387-1394.
|
[7] |
SINGH A, KHAN M A, BAGHEL N. Face Emotion Identification by Fusing Neural Network and Texture Features:Facial Expression[C]// 2020 International Conference on Contemporary Computing and Applications.Piscataway:IEEE, 2020:187-190.
|
[8] |
张儒鹏, 于亚新, 张康, 等. 基于OI-LSTM神经网络结构的人类动作识别模型研究[J]. 计算机科学与探索, 2018, 12(12):1926-1939.
|
|
ZHANG Rupeng, YU Yaxin, ZHANG Kang, et al. Research on Human Action Recognition Model Based on OI-LSTM Neural Network Structure[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(12):1926-1939.
|
[9] |
衣世东. 基于深度学习的图像识别算法研究[J]. 网络安全技术与应用, 2018, 1:39-41.
|
|
YI Shidong. Research on Image Recognition Algorithm Based on Deep Learning[J]. Network Security Technology and Application, 2018, 1:39-41.
|
[10] |
LI C, LAN H Q, SUN Y N, et al. Detection Algorithm of Defects on Polyethylene Gas Pipe Using Image Recognition[J]. International Journal of Pressure Vessels and Piping, 2021, 191:104381.
doi: 10.1016/j.ijpvp.2021.104381
|
[11] |
向前, 王晓丹, 李睿, 等. 基于DCNN的弹道中段目标HRRP图像识别[J]. 系统工程与电子技术, 2020, 42(11):2426-2433.
|
|
XIANG Qian, WANG Xiaodan, LI Rui, et al. HRRP Image Recognition of Midcourse Ballistic Targets Based on DCNN[J]. Systems Engineering and Electronics, 2020, 42(11):2426-2433.
|
[12] |
李江, 冯存前, 王义哲, 等. 基于深度卷积神经网络的弹道目标微动分类[J]. 空军工程大学学报:自然科学版, 2019, 20(4):97-104.
|
|
LI Jiang, FENG Cunqian, WANG Yizhe, et al. Micro-Motion Classification of Ballistic Targets Based on Deep Convolutional Neural Network[J]. Journal of Air Force Engineering University:Natural Science Edition, 2019, 20(4):97-104.
|
[13] |
HAN L, FENG C. Micro-Doppler-Based Space Target Recognition with a One-Dimensional Parallel Network[J]. International Journal of Antennas and Propagation, 2020, 2020:1-10.
|
[14] |
OBAYYA M I, EL-GHANDOUR M, ALROWAIS F. Contactless Palm Vein Authentication Using Deep Learning With Bayesian Optimization[J]. IEEE Access, 2021, 9:1940-1957.
doi: 10.1109/Access.6287639
|
[15] |
BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for Hyper-Parameter Optimization[C]// Advances in Neural Information Processing Systems.San Francisco:Morgan Kaufmann, 2011:1-9.
|
[16] |
SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian Optimization of Machine Learning Algorithms[J]. Advances in Neural Information Processing Systems, 2012, 4:1-9.
|
[17] |
RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. Cambridge: The MIT Press, 2006:105-128.
|
[18] |
MURPHY K P. Machine Learning:A Probabilistic Perspective[M]. Cambridge: The MIT Press, 2012:36-54.
|
[19] |
BELKINAA C, CICCOLELLA C O, ANNO R, et al. Automated Optimized Parameters for T-Distributed Stochastic Neighbor Embedding Improve Visualization and Analysis of Large Datasets[J]. Nature Communications, 2019, 10:1-12.
doi: 10.1038/s41467-018-07882-8
|