西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (5): 149-155.doi: 10.19665/j.issn1001-2400.2021.05.018

• • 上一篇    下一篇

响应差异约束的相关滤波无人机目标跟踪算法

王海军(),张圣燕(),杜玉杰()   

  1. 滨州学院 山东省高校航空信息与控制重点实验室,山东 滨州 256603
  • 收稿日期:2021-04-18 出版日期:2021-10-20 发布日期:2021-11-09
  • 作者简介:王海军(1980—),男,副教授,博士,E-mail: whjlym@163.com|张圣燕(1982—),女,讲师,硕士,E-mail: zsykyx@163.com|杜玉杰(1973—),男,教授,博士,E-mail: duyujie442@163.com
  • 基金资助:
    山东省自然科学基金(ZR2020MF142);山东省自然科学基金(ZR2019PF021);滨州学院博士启动基金(2021Y04);滨州学院重大科研基金(2019ZD03);滨州学院社会服务基金(BZXYSFW201805)

UAV object tracking via the correlation filter with the response divergence constraint

WANG Haijun(),ZHANG Shengyan(),DU Yujie()   

  1. Key Laboratory of Aviation Information and Control in University of Shandong,Binzhou University, Binzhou 256603,China
  • Received:2021-04-18 Online:2021-10-20 Published:2021-11-09

摘要:

针对无人机视频中跟踪目标易受到形变、背景杂乱等问题的困扰,提出一种新颖的基于响应差异约束的相关滤波无人机目标跟踪算法。该方法根据滤波器在前后帧间变化的一致性,建模不同滤波器基于同一训练样本的响应差异,建立目标函数的约束机制,准确学习目标的外观变化,提升滤波器的鲁棒性;同时引入辅助变量构建优化函数,采用交替求解算法将计算目标问题转化为求滤波器和辅助变量的最优解。将文中算法与其他11种算法在DTB70、UAV123@10fps和UAVDT等3个无人机视频数据库上进行跟踪仿真。实验结果表明,所提算法在跟踪准确度和成功率两个指标上均好于其他算法,且在无人机视角复杂环境下,对光照变化、形变、遮挡和运动模糊等挑战性属性均具有良好的鲁棒性,同时平均速度达到21.7帧/秒,能够满足无人机目标跟踪的实时性需求。

关键词: 无人机, 目标跟踪, 相关滤波, 响应差异约束

Abstract:

Aiming at the problem that targets are easily subject to deformation and background clutter interference in the drone sequences,this paper proposes a novel unmanned aerial vehicle (UAV) object tracking method based on the correlation filter with the response divergence constraint.According to the consistency of the filter variation between the previous frame and current frame,the response divergence of different filters acting on the same training sample is modeled.Furthermore,an objective function with the constraint mechanism is built,which can learn the target variation accurately and promote the robustness of filters.Meanwhile,an auxiliary is introduced to construct the optimization function.The alternating direction method of multipliers is used to optimize the solution of the filter and auxiliary variable.We have tested the proposed algorithm and eleven state-of-the-art algorithms on three UAV video databases including DTB70,UAV123@10fps and UAVDT.Experimental results demonstrate that our method is superior to comparison algorithms on two evaluation indicators such as tracking accuracy and success rate and has good robustness for illumination variation,deformation,occlusion,motion blur and other challenging attributes in complex environments from the view of UAV.Meanwhile,the average tracking rate of our algorithm reaches 21.7 frames per second,which meets the real-time requirements of UAV.

Key words: unmanned aerial vehicle, object tracking, correlation filter, response divergence constraint

中图分类号: 

  • TP391