西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (5): 156-166.doi: 10.19665/j.issn1001-2400.2021.05.019

• • 上一篇    下一篇

改进YOLOv3的快速遥感机场区域目标检测

韩永赛1(),马时平1(),何林远1(),李承昊2(),朱明明2(),张飞2()   

  1. 1.空军工程大学 航空工程学院,陕西 西安 710038
    2.空军工程大学 研究生院,陕西 西安 710038
  • 收稿日期:2020-07-10 出版日期:2021-10-20 发布日期:2021-11-09
  • 作者简介:韩永赛(1996—),男,空军工程大学硕士研究生,E-mail: 1013765061@qq.com|马时平(1976—),男,副教授,博士,E-mail: mashiping@126.com|何林远(1983—),男,副教授,博士,E-mail: hall1983@163.com|李承昊(1995—),男,空军工程大学硕士研究生,E-mail: lchyjqq@163.com|朱明明(1993—),男,空军工程大学博士研究生,E-mail: ming_paper@163.com|张 飞(1996—),男,空军工程大学硕士研究生,E-mail: kgfzhang@163.com
  • 基金资助:
    国家自然科学基金(61701524);国家自然科学基金(61773397)

Detection of the object in the fast remote sensing airport area on the improved YOLOv3

HAN Yongsai1(),MA Shiping1(),HE Linyuan1(),LI Chenghao2(),ZHU Mingming2(),ZHANG Fei2()   

  1. 1. School of Aeronautical Engineering,Air Force Engineering University,Xi’an 710038,China
    2. Graduate School,Air Force Engineering University,Xi’an 710038,China
  • Received:2020-07-10 Online:2021-10-20 Published:2021-11-09

摘要:

遥感机场区域目标的检测有很大的军事意义和民用意义。为了取得快速且精确的检测效果,自主构建了更加符合具体任务的数据集;以一步回归全局检测为基础框架,针对数据集中类别分布不均衡问题,提出使用生成的方法用生成对抗网络进行有针对性的数据扩充,以获得具有领域变换特性、类数据分布更为均衡的数据集。同时,使用改进的双权重特征金字塔网络检测部件,来融合得到深层次可区分性的更加鲁棒的特征。实验结果表明,相比原网络,改进网络带来了4.98%的多类目标平均检测精确度以及8.33%的平均交并比的提升,分别达到了89.07%的多类目标平均检测精度以及61.97%的平均交并比。此外,改进网络的平均检测时间为0.062 5 s,相比类似检测率的RetinaNet-101网络速度约快5.3倍,体现了该网络的有效性以及对具体任务的实用性。

关键词: 目标检测, 图像处理, 神经网络, 机场区域, 遥感

Abstract:

The detection of remote sensing airport regional objects is of great military and civilian significance.In order to achieve fast and accurate detection results,a data set that is more mission-specific is independently constructed for the detection task.We use the representative network YOLOv3 of the one-step regression global detection method as the basic framework.For the problem of uneven distribution of categories in the data set,the use of generated data isproposed.The method uses generative adversarial networks to perform targeted data expansion to obtain data sets with domain transformation characteristics and more balanced distribution of different types of data.At the same time,the improved DWFPN detection component is used to fusion deeper distinguishable and more robust features.Experiments show that,compared with the original network,the improved network brings 4.98% increase in mean average precision (mAP) and 8.33% increase in average IOU,which reaches 89.07% mAP and 61.97% average IOU,respectively.At the same time,the average detection time of the improved network is 0.0625s,which is 7 times faster than the RetinaNet-101 network with a similar detection rate.Experiments prove the effectiveness of the network and its practicality for specific tasks.

Key words: object detection, image processing, neural network, airport area, remote sensing

中图分类号: 

  • TP183