西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (5): 167-177.doi: 10.19665/j.issn1001-2400.2021.05.020

• • 上一篇    下一篇

空间可靠性和相关滤波器联合学习的跟踪算法

张飞1(),马时平1(),张立朝1(),何林远1(),仇祝令2(),韩永赛2()   

  1. 1.空军工程大学 航空工程学院,陕西 西安 710038
    2.空军工程大学 研究生院,陕西 西安 710038
  • 收稿日期:2020-09-22 出版日期:2021-10-20 发布日期:2021-11-09
  • 作者简介:张 飞(1996—),男,空军工程大学硕士研究生,E-mail: kgfzhang@163.com|马时平(1976—),男,副教授,博士,E-mail: mashiping@126.com|张立朝(1990—),男,讲师,博士,E-mail: zlichao2012@163.coma|何林远(1983—),男,副教授,博士,E-mail: hal1983@163.com|仇祝令(1995—),男,空军工程大学硕士研究生,E-mail: kgdqzl@163.com|韩永赛(1996—),男,空军工程大学硕士研究生,E-mail: 1013765061@qq.com
  • 基金资助:
    国家自然科学基金(61701524)

Joint spatial reliability and correlation filter learning for visual tracking

ZHANG Fei1(),MA Shiping1(),ZHANG Lichao1(),HE Linyuan1(),QIU Zhuling2(),HAN Yongsai2()   

  1. 1. School of Aeronautical Engineering,Air Force Engineering University,Xi’an 710038,China
    2. Graduate School,Air Force Engineering University,Xi’an 710038,China
  • Received:2020-09-22 Online:2021-10-20 Published:2021-11-09

摘要:

判别式相关滤波器采用循环移位产生负样本的方式不可避免带来了边界效应。基于背景感知的相关滤波跟踪算法试图利用裁剪矩阵获取更多真实的负样本,既有效缓解了边界效应的影响,又增强了对背景信息的学习。然而,裁剪矩阵的使用缺乏对空间不同位置可靠性的学习,可能会导致背景信息对滤波器的学习占据主导地位。为解决该问题,将空间可靠性的学习引入相关滤波算法中,通过交替方向法与滤波器进行联合迭代求解,加强了滤波器对空间可靠性区域的学习,增强了滤波器的对目标与背景的判别力。此外,为优化模型更新策略,提出了一种基于感知哈希算法的自适应模型更新方法,提升了滤波器学习的有效性。所提出的算法在标准视觉跟踪数据集上进行了全面评估,验证了该算法在性能上的有效性以及实时性。

关键词: 视觉跟踪, 相关滤波, 空间可靠性, 联合学习, 感知哈希算法, 自适应学习

Abstract:

The discriminant correlation filter (DCF) uses the cyclic shift to generate negative samples,which inevitably brings boundary effects.The background-aware correlation filter (BACF) attempts to use the clipping matrix to obtain more real negative samples.The method can not only effectively alleviate the influence of the boundary effect,but also enhance the learning of background information.However,the use of the clipping matrix lacks the learning of the spatial reliability of different positions,which may cause the background information to dominate the learning of the filter.In order to solve this problem,this paper introduces the learning of spatial reliability into the correlation filter.And the Alternate Direction Method is used to iteratively obtain the solution of spatial reliability and the filter.Our method can strengthen the learning of the spatial reliability region and enhance the filter's ability to discriminate targets and background.In addition,in order to optimize the model update strategy,an adaptive model update method based on the Perceptual Hash Algorithm is proposed,which improves the effectiveness of filter learning.The proposed algorithm has been comprehensively evaluated on standard visual tracking datasets.The results verify the effectiveness and real-time performance of the algorithm.

Key words: visual tracking, correlation filter, spatial reliability, joint learning, perceptual hashing algorithm, adaptive learning

中图分类号: 

  • TN391.41