西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (5): 178-189.doi: 10.19665/j.issn1001-2400.2021.05.021

• • 上一篇    下一篇

面向高速公路的车辆视频监控分析系统

毛昭勇1(),王亦晨1(),王鑫1,2(),沈钧戈1()   

  1. 1.西北工业大学 无人系统技术研究院,陕西 西安 710072
    2.陕西交通控股集团有限公司,陕西 西安 710065
  • 收稿日期:2021-05-20 出版日期:2021-10-20 发布日期:2021-11-09
  • 通讯作者: 沈钧戈
  • 作者简介:毛昭勇(1980—),男,教授,博士,E-mail: maozhaoyong@nwpu.edu.cn|王亦晨(1998—),男,西北工业大学硕士研究生,E-mail: wyyyc@mail.nwpu.edu.cn|王 鑫(1986—),男,工程师,硕士,E-mail: wangxinnpu@mail.nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(61603233);陕西省自然科学基金(2017JQ6076)

Vehicle video surveillance and analysis system for the expressway

MAO Zhaoyong1(),WANG Yichen1(),WANG Xin1,2(),SHEN Junge1()   

  1. 1. Unmanned System Research Institute,Northwestern Polytechnical University,Xi’an 710072,China
    2. Shaanxi Transportation Holding Group CO.,LTD.,Xi’an 710065,China
  • Received:2021-05-20 Online:2021-10-20 Published:2021-11-09
  • Contact: Junge SHEN

摘要:

随着视频监控技术在道路安全应用的迅猛发展,为实现高速公路智能化管理,提出一套面向高速公路的车辆视频监控分析系统。通过对监控视频流中的车辆进行检测和跟踪,进一步实现了高速公路相关车辆监测的应用。提出了基于双向金字塔多尺度融合的轻量级车辆检测跟踪算法,基于YOLOv3在主干网络上使用轻量级网络EfficientNet,并且利用双向特征金字塔网络进行多尺度特征融合,使得算法在保证检测实时性的同时提升检测的准确度。通过采集高速公路监测视频,构建了一个多场景高速公路车辆目标数据集。在此数据集上的实验结果表明,所提出的算法检测精度达97.11%,高于原始YOLOv3检测算法16.5%,并且结合DeepSORT模型在车辆跟踪上以31帧每秒的帧速度实时运行。同时,该车辆监测系统可在车流量统计、交通异常事件检测领域进行多路实时监测,具有实际应用价值。

关键词: 高速公路视频监控, 车辆监测, 目标检测, 目标跟踪, 多尺度特征融合

Abstract:

With the rapid development of video surveillance technology in the application of road safety,in order to realize the intelligent management of the expressway,this paper proposes a vehicle video surveillance and analysis system for the expressway.By detecting and tracking the vehicles for the surveillance videos,the applications of expressway related vehicle monitoring are further realized.The system presents a lightweight vehicle detection and tracking algorithm based on bidirectional pyramid multi-scale integration.The algorithm uses the lightweight network EfficientNet based on YOLOv3,and uses the bidirectional feature pyramid network (BiFPN) for multi-scale feature fusion.This system could ensure the real-time detection and improve the detection accuracy.Furthermore,in this paper,a multi-scene-highway-vehicles dataset is constructed by collecting freeway monitoring videos.Experimental results of this dataset shows that the detection accuracy of the proposed algorithm is 97.11%,which is 16.5% higher than that of the original YOLOv3 detection algorithm,and that the algorithm could run in real time at 31fps on vehicle tracking by combining with the DeepSORT model.At the same time,the vehicle monitoring system could realize multi-channel real-time detections in the field of vehicle flow statistics and traffic abnormal event detection,which is of practical application value.

Key words: highway video surveillance, vehicle monitoring, object detection, object tracking, multi-scale feature fusion

中图分类号: 

  • TP23