西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (5): 201-211.doi: 10.19665/j.issn1001-2400.2021.05.023

• • 上一篇    下一篇

联合DD-GAN和全局特征的井下人员重识别方法

孙彦景1,2(),魏力1(),张年龙3(),云霄1(),董锴文1(),葛敏1(),程小舟1,4(),侯晓峰5()   

  1. 1.中国矿业大学 信息与控制工程学院,江苏 徐州 221116
    2.徐州市智能安全与应急协同工程研究中心,江苏 徐州 221116
    3.安徽马钢罗河矿业有限责任公司生产技术部,安徽 合肥 231562
    4.中钢集团马鞍山矿山研究院股份有限公司选矿及自动化研究所,安徽 马鞍山 243000
    5.无锡沃爱思科技有限公司,江苏 无锡 214125
  • 收稿日期:2020-09-20 出版日期:2021-10-20 发布日期:2021-11-09
  • 通讯作者: 云霄
  • 作者简介:孙彦景(1977—),男,教授,博士,E-mail: yjsun@cumt.edu.cn|魏 力(1996—),女,助理教师,硕士,E-mail: lwei@cumt.edu.cn|张年龙(1985—),男,高级工程师,学士,E-mail: anhuilj@qq.com|董锴文(1996—),男,硕士,E-mail: dongkaiwen@cumt.edu.cn|葛 敏(1994—),女,助理工程师,硕士,E-mail: 1462220177@qq.com|程小舟(1981—),男,正高级工程师,硕士,E-mail: cxz3005@163.com|侯晓峰(1980—),男,硕士,E-mail: houxiaofeng@voicon.cn
  • 基金资助:
    江苏省自然科学基金青年项目(BK20180640);国家自然科学基金(61902404);国家自然科学基金(51734009);国家自然科学基金(51504255);国家自然科学基金(61771417);国家自然科学基金(62001475);国家重点研发计划(2016YFC0801403);江苏省重点研发计划(BE2015040)

Person re-identification method combining the DD-GAN and Global feature in a coal mine

SUN Yanjing1,2(),WEI Li1(),ZHANG Nianlong3(),YUN Xiao1(),DONG Kaiwen1(),GE Min1(),CHENG Xiaozhou1,4(),HOU Xiaofeng5()   

  1. 1. School of Information and Control Engineering,China University of Mining Technology,Xuzhou 221116,China
    2. Xuzhou Engineering Research Center of Intelligent Industry Safety and Emergency Collaboration,Xuzhou 221116,China
    3. Anhui Magang Luohe Mining CO.,LTD,Hefei 231562,China
    4. Institute of Mineral Processing and Automation,Sinosteel Maanshan Institute of Mining Research CO.,LTD,Ma’anshan 243000,China
    5. Wuxi Voicon Technology CO.,LTD,Wuxi 214125,China
  • Received:2020-09-20 Online:2021-10-20 Published:2021-11-09
  • Contact: Xiao YUN

摘要:

对煤矿井下各重要区域多个监控摄像头获取到的视频数据进行管控分析,定位和身份识别视频中的工作人员,对煤矿安全智能化生产具有重要意义。为解决矿井下光线暗淡、光照不均匀,现有常规行人重识别方法不能满足井下人员重识别的问题,提出一种联合双鉴别式生成对抗网络和全局特征的井下人员重识别方法。首先,采用双鉴别式生成对抗网络DD-GAN对井下暗光或光照不均的图像进行增强与复原,为后续重识别提供更具辨别力的图像基础;其次,在图像增强的基础上,设计一种基于全局特征描述的重识别网络以解决井下作业人员的身份识别问题,并使用随机擦除与k互近邻重排序方法来进一步提高重识别网络的鲁棒性和识别精度;最后,构建适用于井下特殊场景的Miner-CUMT数据集,解决了现有样本集场景单一的问题,同时也提高了该方法的泛化性。该方法在构建数据集Miner-CUMT进行了有效性验证,实现了煤矿巷道低照度场景下精准的人员重识别任务,为推进煤矿智能化安全生产的发展打下重要基础。

关键词: 智能化煤矿, 行人重识别, 卷积神经网络, 图像增强, 生成对抗网络

Abstract:

It is of great significance to the smarter safe production of coal to control and analyze the video data obtained by multiple surveillance cameras in each important area of the coal mine,and to locate and identify the workers in the video.However,due to the dim light and uneven illumination in the mine,the existing conventional method of person re-identification (Re-ID) cannot meet the requirements in the coal mine.In order to solve the above problems,this paper proposes a Re-ID method combining the Dual-Discriminator Generative Adversarial Network and global feature in coal mine.First,the Dual-Discriminator Generative Adversarial Network(DD-GAN) is designed to enhance and restore images with dim light or uneven illumination,providing a more discriminating image foundation for person re-identification.Second,the Global Feature Network for Re-ID is proposed in the coal mine to solve the miner’s identification problem,and the methods of Random erasing and Re-ranking of k-reciprocal nearest neighbors are used to improve further the robustness and accuracy of the Re-ID network.Finally,the Miner-CUMT dataset suitable for special downhole scenes is constructed,which solves the problems of the single scene of existing sample sets and improves the generalization of the method presented in this paper.The proposed method has achieved good results in the Miner-CUMT dataset and actual scene in the coal mine,which lays an important foundation for the development of intelligent and safe production in coal mines.

Key words: smart coal mines, person re-identification, convolutional neural network, image enhancement, generative adversarial networks

中图分类号: 

  • TP391