西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (5): 231-238.doi: 10.19665/j.issn1001-2400.2021.05.026

• • 上一篇    下一篇

一种利用量测空间聚类的多帧检测前跟踪算法

张佳琦1(),陶海红1(),张修社2(),韩春雷2()   

  1. 1.西安电子科技大学 雷达信号处理国家重点实验室,陕西 西安 710071
    2.西安导航技术研究所,陕西 西安 710068
  • 收稿日期:2020-07-21 出版日期:2021-10-20 发布日期:2021-11-09
  • 作者简介:张佳琦(1987—),男,西安电子科技大学博士研究生,E-mail: zhangjiaqi0312@126.com|陶海红(1976—),女,教授,博士,E-mail: hhtao@xidian.edu.cn|张修社(1965—),男,研究员,硕士,E-mail: zhangxiushe20@163.com|韩春蕾(1982—),男,研究员,博士,E-mail: hanchunlei@sina.com
  • 基金资助:
    中央部委科技委创新项目(H863-XJ-001-02)

A multi-frame track before detect algorithm utilizing measurement space clustering

ZHANG Jiaqi1(),TAO Haihong1(),ZHANG Xiushe2(),HAN Chunlei2()   

  1. 1. National Key Laboratory of Radar Signal Processing,Xidian University,Xi’an 710071,China
    2. The Institute of Xi’an Navigation Technology,Xi’an 710068,China
  • Received:2020-07-21 Online:2021-10-20 Published:2021-11-09

摘要:

针对现有多帧检测前跟踪算法在相互临近的多目标场景下运算复杂度高的问题,提出一种利用量测空间聚类的多帧检测前跟踪算法。该算法采用跨多帧构建关联集合,依据关联集合对量测点迹进行标签标记,以获取多目标在量测空间的分布信息,实现多帧量测点迹的聚类划分,并在各聚类内独立地运行多帧检测前跟踪算法。通过大量仿真实验和性能分析表明,该算法的检测性能与现有多帧检测前跟踪算法相当,而运算复杂度大幅降低。

关键词: 目标检测, 聚类, 检测前跟踪, 动态规划

Abstract:

A multi-frame track before detect (TBD) algorithm based on Measurement Space clustering is proposed to solve the high computational complexity problem of the existing multi-frame TBD algorithm in the multiple targets scenario.In the proposed algorithm,a track extrapolation strategy is used to construct an association set among the tracks of continuous data frames,and then a label is constructed according to the association set to obtain the distribution information on multiple targets in the measurement space,a multi-frame measurement points is divided into clusterings,and a multi-frame TBD Algorithm is implemented in each clustering.Simulation result and performance analysis show that the detection performance of the proposed algorithm is comparable to that of the existing multi-frame TBD algorithm,and that the computational complexity is greatly reduced.

Key words: target detection, clustering, track before detect, dynamic programming

中图分类号: 

  • TN953+.7