西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (6): 57-66.doi: 10.19665/j.issn1001-2400.2021.06.008
• 智能嵌入式系统结构与软件关键技术专栏 • 上一篇 下一篇
收稿日期:
2021-08-16
出版日期:
2021-12-20
发布日期:
2022-02-24
作者简介:
蒋 林(1970—),男,教授,E-mail: 基金资助:
JIANG Lin1(),FENG Ru1(),DENG Junyong2(),LI Yuancheng1()
Received:
2021-08-16
Online:
2021-12-20
Published:
2022-02-24
摘要:
图计算中数据的压缩格式是图算法访存效率和性能的关键影响因素之一。基于此,针对中心性算法如何根据性能需求选择合适的压缩格式来提升图计算系统性能的问题,采用Skylake Xeon(R) Platinum 8164处理器上的硬件性能计数器对不同数据集的坐标表示、压缩稀疏列、压缩稀疏行、双压缩稀疏列和独立稀疏列压缩的5种压缩格式进行性能评测与分析。性能评价指标包括执行时间、计算量、数据移动量以及功耗等。评价结果表明,当硬件资源受限时,压缩稀疏行压缩格式在处理以遍历为中心的中心性算法时表现最优,可有效地减少程序执行时间、数据移动量以及降低功耗;使用CSC压缩格式,可有效地降低缓存缺失率,更好地利用数据局部性;在考虑内存占用情况下,双压缩稀疏列压缩格式可提高图数据存储效率;独立稀疏列压缩格式在硬件加速器的数据并行性方面有一定的优势,但在通用处理器上的图应用方面并不理想;坐标表示压缩格式在提升图计算应用性能方面相对较差。分析结果对于中心性算法如何根据不同性能需求选择预处理方式提供了依据。
中图分类号:
蒋林,冯茹,邓军勇,李远成. BC算法性能与图数据格式的关系特性分析[J]. 西安电子科技大学学报, 2021, 48(6): 57-66.
JIANG Lin,FENG Ru,DENG Junyong,LI Yuancheng. Analysis of the relationship between the performance of the BC and the format of the graph data[J]. Journal of Xidian University, 2021, 48(6): 57-66.
表1
实验平台信息性能参数"
标签 | 描述 |
---|---|
Server | HPE580(208core,416line) |
CPU | Iinter(R) Xeon (R) Platinum 8164 |
L1-icache | 32 kB per core |
L1-dcache | 32 kB per core |
L2 cache | 1 024 kB per core |
L3 cache | 36 608 kB percore |
RAM | 1TB |
Kernel | 4.15.0-106-generic |
Perf | 4.15.18 |
gcc | 5.4.0 |
Parameters | datamv,compute,energy,exec.Time,IPC,MPKI |
表2
实验所选数据集"
数据集 | 描述 | 顶点数 | 边数 | 占用内存/kB |
---|---|---|---|---|
feather-deezer-social | Social network of Deezer users from Europe | 28 281 | 92 752 | 1 012.40 |
Wiki-Vote | Wikipediaadminship vote network till January 2008 | 8 276 | 103 689 | 1 126.40 |
ca-AstroPh | Collaboration network ofArxiv Astro Physics category | 18 772 | 198 110 | 5 160.96 |
Soc-brightkite | Social netwoks of location | 56739 | 212 945 | 2 252.80 |
Soc_gemsec_HU | Friendship networks of users from 3 European countries | 47 538 | 222 887 | 2 457.60 |
Soc_gemsec_HR | Friendship networks of users from 3 European countries | 54 572 | 498 202 | 5 632.00 |
[1] | ZHUO Y, WANG C, ZHANG M, et al. GraphQ:Scalable PIM-Based Graph Processing[C]// Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.New York:ACM, 2019:712-725. |
[2] | WU C, ZHANG G, ZHENG W. Reviewing Large Graph Computing from a System Perspective[J]. Big Data Research, 2015, 1(3):41-54. |
[3] | KUMAR P, HUANG H H. GraphOne:A Data Store for Real-time Analytics on Evolving Graphs[J]. ACM Transactions on Storage, 2020, 15(4):1-40. |
[4] | 徐智诚, 李响, 毛剑, 等. 分布式架构中的Sybil攻击及防御综述[J]. 西安电子科技大学学报, 2021, 48(1):39-49. |
XU Zhicheng, LI Xiang, MAO Jian, et al. Overview of Sybil Attacks and Defenses in the Distributed Architecture[J]. Journal of Xidian University, 2021, 48(1):39-49. | |
[5] |
GUI C, ZHENG L, HE B, et al. A Survey on Graph Processing Accelerators:Challenges and Opportunities[J]. Journal of Computer Science and Technology, 2019, 34(2):339-371.
doi: 10.1007/s11390-019-1914-z |
[6] | XU Z, CHEN X, SHEN J, et al. GARDENIA:A Graph Processing Benchmark Suite for Next-Generation Accelerators[J]. ACM Journal on Emerging Technologies in Computing Systems, 2019, 15(1):1-13. |
[7] |
GUI C, ZHENG L, HE B, et al. A Survey on Graph Processing Accelerators:Challenges and Opportunities[J]. Journal of Computer Science and Technology, 2019, 34(2):339-371.
doi: 10.1007/s11390-019-1914-z |
[8] | CHERNOSKUTOV M. Graph Processing System for Network Science[C]// 2020 International Conference Engineering and Telecommunication (En&T).Piscataway:IEEE, 2020:1-3. |
[9] | BALAJI V, CRAGO N, JALEEL A, et al. P-OPT:Practical Optimal Cache Replacement for Graph Analytics[C]// 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA).Piscataway:IEEE, 2021:668-681. |
[10] | ROY A, MIHAILOVIC I, ZWAENEPOEL W. X-stream:Edge-Centric Graph Processing Using Streaming Partitions[C]// Proceedings of the 24th ACM Symposium on Operating Systems Principles.New York:ACM, 2013:472-488. |
[11] | SONG L, ZHUO Y, QIAN X, et al. GraphR:Accelerating Graph Processing Using ReRAM[C]// Proceedings of the 2018 IEEE International Symposium on High-Performance Computer Architecture.Piscataway:IEEE, 2018:531-543. |
[12] | GONZALEZ J E, LOW Y, GU H, et al. PowerGraph:Distributed Graph-Parallel Computation on Natural Graphs[C]// Proceedings of the 10th Usenix Symposium on Operating Systems Design and Implementation.Berkeley:USENIX, 2012:17-30. |
[13] | CHEN R, SHI J, CHEN Y, et al. PowerLyra:Dfferentiated Graph Computation and Partitioning on Skewed Graphs[C]// Proceedings of the 10th European Conference on Computer Systems.New York:ACM, 2015:1-15. |
[14] | MAASS S, MIN C, KASHYAP S, et al. Mosaic:Processing a Trillion-Edge Graph on a Single Machine[C]// Proceedings of the 12th European Conference on Computer Systems.New York:ACM, 2017:527-543. |
[15] | ZHANG J, KHORAM S, LI J. Boosting the Performance of FPGA-Based Graph Processor Using Hybrid Memory Cube:A Case for Breadth First Search[C]// Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.New York:ACM, 2017:207-216. |
[16] | ZHU X W, CHEN W G, ZHENG W M, et al. Gemini:A Computation-Centric Distributed Graph Processing System[C]// Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation.Berkeley:USENIX, 2016:301-316. |
[17] | KEPNER J, GILBERT J. Graph Algorithms in the Language of Linear Algebra[M]. Philadelphia:SIAM, 2011. |
[18] | BULUC A, GILBERT J R. On the Representation and Multiplication of Hypersparse Matrices[C]// 2008 IEEE International Symposium on Parallel and Distributed Processing.Piscatawy:IEEE, 2008:1-11. |
[19] |
OZDAL M M, YESIL S, KIM T, et al. Energy Efficient Architecture for Graph Analytics Accelerators[J]. ACM SIGARCH Computer Architecture News, 2016, 44(3):166-177.
doi: 10.1145/3007787.3001155 |
[20] | BALAY S, BUSCHELMAN K, EIJKHOUT V, et al. PETSc Users Manual:Revision 3.8[R]. Argonne:Argonne National Laboratory,Office of Scientific and Technical Information (OSTI), 2017. |
[21] |
BULUC A, GILBERT J R. The Combinatorial BLAS:Design,Implementation,and Applications[J]. The International Journal of High Performance Computing Applications, 2011, 25(4):496-509.
doi: 10.1177/1094342011403516 |
[22] | YUAN L, DING C, TEFANKOVIC D, et al. Modeling the Locality in Graph Traversals[C]// 2012 41st International Conference on Parallel Processing.Piscataway:IEEE, 2012:138-147. |
[23] | ZHOU S, CHELMIS C, PRASANNA V K. High-Throughput and Energy-Efficient Graph Processing on FPGA[C]// 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM).Piscataway:IEEE, 2016:103-110. |
[24] | 邓军勇, JOHN L K, SONG S, et al. 一种用于图计算加速器的图数据压缩方法及图计算加速器:中国,CN201910107925.2[P]. 2019-02-02. |
[25] |
BRANDES U. A Faster Algorithm for Betweenness Centrality[J]. Journal of Mathematical Sociology, 2001, 25(2):163-177.
doi: 10.1080/0022250X.2001.9990249 |
[26] | CRESCENZI P, FRAIGNIAUD P, PAZ A. Simple and Fast Distributed Computation of Betweenness Centrality[C]// IEEE INFOCOM 2020-IEEE Conference on Computer Communications.Piscataway:IEEE, 2020:337-346. |
[27] |
KATSAROS D, DIMOKAS N, TASSIULAS L. Social Network Analysis Concepts in the Design of Wireless Ad Hoc Network Protocols[J]. IEEE Network, 2010, 24(6):23-29.
doi: 10.1109/MNET.2010.5634439 |
[28] |
PANTAZOPOULOS P, KARALIOPOULOS M, STAVRAKAKIS I. Distributed Placement of Autonomic Internet Services[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(7):1702-1712.
doi: 10.1109/TPDS.2013.186 |
[29] |
ZILBERMAN P, PUZIS R, ELOVICI Y. On Network Footprint of Traffic Inspection and Filtering at Global Scrubbing Centers[J]. IEEE Transactions on Dependable and Secure Computing, 2017, 14(5):521-534.
doi: 10.1109/TDSC.2015.2494039 |
[30] | JIN S, HUANG Z, CHEN Y, et al. A Novel Application of Parallel Betweenness Centrality to Power Grid Contingency Analysis[C]// 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).Piscataway:IEEE, 2010:1-7. |
[31] | DE MELO A C. The New Linux ‘Perf’ Tools (2010)[R/OL]. [2010-09-01]http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf . |
[32] | Stanford University.Stanford Large Network Dataset Collection (2021)[DS/OL]. [2021-01-01]https://snap.stanford.edu/data/ . |
[33] | Network Repository.An Interactive Scientific Network Data Repository (2021)[DB/OL]. [2021-01-01]http://networkrepository.com/index.php . |
[1] | 孙彦景;渠倩倩;王博文;左海维;王晓琳. 一种带内全双工无线网络MAC机制及性能分析[J]. 西安电子科技大学学报, 2018, 45(3): 123-129. |
[2] | 刘立芳;吴丹;郎晓光;齐小刚. GEO/LEO卫星网络的数据传输与抗毁性技术[J]. 西安电子科技大学学报, 2018, 45(1): 1-5+54. |
[3] | 杨洁;刘聪锋;田中成;张斌. 迭代时差频差联合定位算法及其性能分析[J]. J4, 2015, 42(4): 140-146. |
[4] | 杨洁;刘聪锋. 迭代频差定位算法及其性能分析[J]. J4, 2013, 40(5): 8-14. |
[5] | 李川;刘伟. 一种基于正交空时块编码的单天线AF中继方案[J]. J4, 2013, 40(2): 117-122. |
[6] | 李川 刘伟. 一种基于正交空时块编码的单天线AF中继方案*[J]. J4, 2013, 40(2): 117-122. |
[7] | 铁满霞1;2;李建东1;2;王育民1. WAPI证书鉴别协议的改进及性能分析 [J]. J4, 2007, 34(7): 1-4. |
[8] | 张翌维1;沈绪榜1;朱向东1;2. 一种FM-QCSK混沌数字通信系统及其性能分析 [J]. J4, 2007, 34(2): 259-263. |
[9] | 李波1;李建东2;方勇1. 非饱和状态下IEEE 802.11 DCF的性能分析 [J]. J4, 2007, 34(1): 76-81. |
[10] | 李建东;刘静;栾英姿. UPMA协议的改进和性能分析[J]. J4, 2005, 32(4): 497-500. |
[11] | 杨军;李建东;李维英. 有效支持智能天线在移动Ad Hoc网络中应用的多址接入协议[J]. J4, 2003, 30(3): 309-314. |
[12] | 暂时无作者信息. 高速分组无线网数据/话音综合业务仿真研究[J]. J4, 1999, 26(3): 342-347. |
[13] | 郑蝴蝶;刘乃安;郭峰. SAWTDL-DL解扩解调器及其性能分析[J]. J4, 1998, 25(3): 0-0. |
[14] | 曾兴雯;裴昌幸;刘乃安. 数字相关器及解扩性能分析[J]. J4, 1997, 24(2): 0-0. |
[15] | 暂时无作者信息. ATM交换单元基本排队策略性能分析[J]. J4, 1997, 24(2): 0-0. |
|