西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (6): 57-66.doi: 10.19665/j.issn1001-2400.2021.06.008

• 智能嵌入式系统结构与软件关键技术专栏 • 上一篇    下一篇

BC算法性能与图数据格式的关系特性分析

蒋林1(),冯茹1(),邓军勇2(),李远成1()   

  1. 1.西安科技大学 计算机科学与技术学院,陕西 西安 710600
    2.西安邮电大学 电子工程学院,陕西 西安 710121
  • 收稿日期:2021-08-16 出版日期:2021-12-20 发布日期:2022-02-24
  • 作者简介:蒋 林(1970—),男,教授,E-mail: jianglin@xust.edu.cn|冯 茹(1997—),女,西安科技大学硕士研究生,E-mail: fengru_2019@163.com|邓军勇(1981—),男,副教授,E-mail: djy@xupt.edu.cn|李远成(1981—),男,讲师,E-mail: yuanch_li@126.com
  • 基金资助:
    国家自然科学基金(61834005);国家自然科学基金(61772417);国家自然科学基金(61802304);国家自然科学基金(61602377);国家自然科学基金(61874087);陕西省自然科学基金面上项目(2020JM-525);榆林市科技计划项目(2019-133)

Analysis of the relationship between the performance of the BC and the format of the graph data

JIANG Lin1(),FENG Ru1(),DENG Junyong2(),LI Yuancheng1()   

  1. 1. School of Computer Science and Technology,Xi’an University of Science and Technology,Xi’an 710600,China
    2. School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China
  • Received:2021-08-16 Online:2021-12-20 Published:2022-02-24

摘要:

图计算中数据的压缩格式是图算法访存效率和性能的关键影响因素之一。基于此,针对中心性算法如何根据性能需求选择合适的压缩格式来提升图计算系统性能的问题,采用Skylake Xeon(R) Platinum 8164处理器上的硬件性能计数器对不同数据集的坐标表示、压缩稀疏列、压缩稀疏行、双压缩稀疏列和独立稀疏列压缩的5种压缩格式进行性能评测与分析。性能评价指标包括执行时间、计算量、数据移动量以及功耗等。评价结果表明,当硬件资源受限时,压缩稀疏行压缩格式在处理以遍历为中心的中心性算法时表现最优,可有效地减少程序执行时间、数据移动量以及降低功耗;使用CSC压缩格式,可有效地降低缓存缺失率,更好地利用数据局部性;在考虑内存占用情况下,双压缩稀疏列压缩格式可提高图数据存储效率;独立稀疏列压缩格式在硬件加速器的数据并行性方面有一定的优势,但在通用处理器上的图应用方面并不理想;坐标表示压缩格式在提升图计算应用性能方面相对较差。分析结果对于中心性算法如何根据不同性能需求选择预处理方式提供了依据。

关键词: 图计算, 压缩格式, 中心性, 性能分析

Abstract:

The data compression format in graph computing is one of the key influencing factors of graph algorithm memory access efficiency and performance.Based on this,this paper focuses on how the BC (Betweenness Centrality) algorithm selects the appropriate compression format according to performance requirements to improve the performance of the graph computing system.The hardware performance counter on the Skylake Xeon(R) Platinum 8164 processor is used to analyze different data,with acollection of five compression formats of COO,CSC,CSR,DCSC and CSCI adopted for performance evaluation and analysis.Performance evaluation indicators include execution time,calculation volume,data movement volume,and power consumption.The evaluation results show that when hardware resources are limited,the CSR compression format performs best when processing the traversal-centric BC algorithm,which can effectively reduce the program execution time,data movement,and power consumption.Using the CSC compression format can effectively reduce the Cache miss rate and lead to a better use of data locality.Using the DCSC compression format can improve the graph data storage efficiency when considering memory usage.Using the CSCI compression format has certain advantages in the data parallelism of hardware accelerators,but for general-purpose processors the graph application is not ideal.The COO compression format is relatively poor in improving the performance of graph computing applications.Analytical results provide a basis for how the BC algorithm selects preprocessing methods according to different performance requirements

Key words: graph processing, compression format, betweenness centrality, performance analysis

中图分类号: 

  • TP302.7