[1] |
陈鑫. 基于轻量化AlexNet模型的雷达信号识别算法研究[D]. 黑龙江:哈尔滨工程大学, 2019.
|
|
CHEN Xin. Research on radar signal recognition algorithm based on lightweight AlexNet model[D]. Heilongjiang:Harbin Engineering University, 2019.
|
[2] |
MORAITAKIS I, FARGUESM P. Feature extraction of intra-pulse modulated signals using time-frequency analysis[C]// 21st Century Military Communications.Architectures and Technologies for Information Superiority.Piscataway:IEEE, 2000:22-25.
|
[3] |
王世强, 张登福, 毕笃彦, 等. 双谱二次特征在雷达信号识别中的应用[J]. 西安电子科技大学学报, 2012, 39(2):127-132.
|
|
WANG Shiqiang, ZHANG Dengfu, BI Duyan, et al. The application of bispectral secondary features in radar signal recognition[J]. Journal of Xidian University, 2012, 39(2):127-132.
|
[4] |
Vanhoy G, Schucker T, Bose T. Classification of LPI radar signals using spectral correlation and support vector machines[J]. Analog Integrated Circuits and Signal Processing, 2017, 91(2):305-313.
doi: 10.1007/s10470-017-0944-0
|
[5] |
SCHÖLKOPF B, PLATT J, HOFMANN T. Greedy Layer-Wise Training of Deep Networks[J]. Advances in Neural Information Processing Systems, 2007, 19:153-160.
|
[6] |
HINTON G E, OSINDERO S, TEH Y W. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7):1527-1554.
doi: 10.1162/neco.2006.18.7.1527
|
[7] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
doi: 10.1038/nature14539
|
[8] |
KONG S H, KIM M, HOANG L M, et al. Automatic LPI Radar Waveform Recognition Using CNN[J]//IEEE Access.Piscataway:IEEE, 2018:4207-4219.
|
[9] |
QU Z, MAO X, DENG Z. Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Neural Network[J]. IEEE Access, 2018, 6:43874-43884.
doi: 10.1109/Access.6287639
|
[10] |
DENG J, DONG W, SOCHER R, et al. ImageNet:a Large-Scale Hierarchical Image Database[C]// 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2009:20-25
|
[11] |
杨晓红. LPI雷达信号智能检测与识别技术[D]. 四川:电子科技大学, 2019.
|
|
Yang Xiaohong. Intelligent detection and recognition technology of LPI radar signal[D]. Sichaun:University of Electronic Science and Technology of China, 2019.
|
[12] |
杨懿男, 齐林海, 王红, 等. 基于生成对抗网络的小样本数据生成技术研究[J]. 电力建设, 2019, 40(5):71-77.
|
|
YANG Yinan, QI Linhai, WANG Hong, et al. Research on small sample data generation technology based on generative confrontation network[J]. Electric Power Construction, 2019, 40(5):71-77.
|
[13] |
陈文兵, 管正雄, 陈允杰. 基于条件生成式对抗网络的数据增强方法[J]. 计算机应用, 2018, 38(11):3305-3311.
|
|
CHEN Wenbing, GUAN Zhengxiong, CHEN Yunjie. Data augmentation method based on conditional generative confrontation network[J]. Computer Applications, 2018, 38(11):3305-3311.
|
[14] |
PEREZ L, WANG J. The Effectiveness of data augmentation in image classification using deep learning[C/OL]. [2020-06-10]. http://arxiv.org/abs/1712.04621.2017
|
[15] |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans[EB/OL]. [2017-3-31]https://arxiv.org/pdf/1704.00028.pdf .
|
[16] |
MAO X D, LI Q, XIE H R, et al. Least Squares Generative Adversarial Networks[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2017:2794-2802.
|