西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (6): 96-104.doi: 10.19665/j.issn1001-2400.2021.06.012

• 信息与通信工程 • 上一篇    下一篇

生成对抗网络小样本雷达调制信号识别算法

于浩洋(),尹良(),李书芳(),吕顺()   

  1. 北京邮电大学 信息与通信工程学院,北京 100876
  • 收稿日期:2020-07-01 出版日期:2021-12-20 发布日期:2022-02-24
  • 通讯作者: 尹良
  • 作者简介:于浩洋(1994—),男,北京邮电大学硕士研究生,E-mail: yhy123@bupt.edu.cn|李书芳(1963—),女,教授,博士,E-mail: lisf@bupt.edu.cn|吕 顺(1997—),男,北京邮电大学硕士研究生,E-mail: 15866103056@163.com
  • 基金资助:
    国家重点研发计划(2018YFB1800802);国家自然科学基金青年基金(61801034)

Recognition algorithm for the little sample radar modulation signal based on the generative adversarial network

YU Haoyang(),YIN Liang(),LI Shufang(),LV Shun()   

  1. School of information and communication engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China
  • Received:2020-07-01 Online:2021-12-20 Published:2022-02-24
  • Contact: Liang YIN

摘要:

雷达调制识别技术在电子侦察、电子支援等领域发挥着重要的作用。现有的雷达调制信号识别算法,通常采用脉内特征提取或者深度学习技术来实现。但这两种方法都存在弊端。提取脉内特征需要复杂的先验知识;深度学习技术虽然不需要复杂的先验知识,但是深度学习技术是数据驱动需要海量的数据以支撑其训练。雷达信号数据的获取又十分的困难,难以构建复杂且庞大的数据集来表征模型,因而对于深度学习技术的小样本识别方法的需求变得迫在眉睫。为此,提出增强深度卷积生成对抗网络加卷积神经网络的雷达调制信号识别算法来实现数据增强,在小样本的条件下,仍能对多种雷达调制信号实现高精度识别。经对比实验,增强深度卷积生成对抗网络加卷积神经网络的算法在信噪比为0 dB、原始样本数量为200个的条件下,较DCGAN-CNN、GAN-CNN方法识别准确率提升了约4%,较卷积神经网络方法识别准确率提升了约10%。实验结果充分验证了在小样本条件下,增强深度卷积生成对抗网络加卷积神经网络的方法能有效地提升信号识别的准确率。

关键词: 信号识别, 生成对抗网络, 小样本, 卷积神经网络, 数据增强

Abstract:

Radar modulation recognition technology plays a large part in electronic reconnaissance,electronic support and other traditional areas.Existing radar modulation signal recognition algorithms are usually implemented using intra-pulse feature extraction or deep learning techniques.Both methods have disadvantages.Extracting intra-pulse features requires complex prior knowledge.Although deep learning technology does not require complex prior knowledge,it is data-driven,which needs massive data to support its training,and it is very difficult to obtain radar signal data.It is also difficult to build a complex and huge data set to represent the model.Therefore,the need for a small-sample recognition method for deep learning technology becomes urgent.In this paper,we propose an algorithm for radar modulation signal recognition based on Enhanced Deep Convolution Generative Adversarial Networks (SDCGAN) and the Convolutional Neural Network (CNN) to achieve data enhancement.Under the condition of small samples,it is still possible to achieve high-precision identification of a variety of radar modulated signals.This paper verifies the superiority of the SDCGAN-CNN algorithm over other algorithms and the effectiveness of signal recognition under small sample conditions through comparative experiments.Under the condition of a relatively high signal-to-noise ratio,the recognition accuracy rate of other generation adversarial network and convolutional neural network methods is improved by 4%,and the recognition accuracy rate of convolutional neural network methods is increased by 10%.

Key words: signal recognition, generative adversarial network, small sample, convolutional neural network, data enhancement

中图分类号: 

  • TN911.6