[1] |
BAO F, ABDULLA W H. A New Ratio Mask Representation for CASA-Based Speech Enhancement[J]. IEEE/ACM Transactions on Audio,Speech and Language Processing, 2019, 27(1):7-19.
doi: 10.1109/TASLP.2018.2868407
|
[2] |
白静, 史燕燕, 薛珮芸, 等. 融合非线性幂函数和谱减法的CFCC特征提取[J]. 西安电子科技大学学报, 2019, 46(1):86-92.
|
|
BAI Jing, SHI Yanyan, XUE Peiyun, et al. CFCC Feature Extraction for Fusion of the Power-Law Nonlinearity Function and Spectral Subtraction[J]. Journal of Xidian University, 2019, 46(1):86-92.
|
[3] |
尹向雷, 郑恩让, 马令坤, 等. 基于掩蔽效应的维纳滤波器语音增强及DSP实现[J]. 电子技术应用, 2010, 36(4):123-126.
|
|
YIN Xianglei, ZHENG Enrang, MA Lingkun, et al. Speech Enhancement and DSP Implementation of Wiener Filter Based on Masking Effect[J]. Application of Electronic Technique, 2010, 36(4):123-126.
|
[4] |
WANG Y, NARAYANAN A, WANG D L. On Training Targets for Supervised Speech Separation[J]. IEEE/ACM Transactions on Audio,Speech and Language Processing, 2014, 22(12):1849-1858.
doi: 10.1109/TASLP.2014.2352935
|
[5] |
KANG T G, SHIN J W, KIM N S. DNN-Based Monaural Speech Enhancement with Temporal and Spectral Variations Equalization[J]. Digital Signal Processing, 2018, 74:102-110.
doi: 10.1016/j.dsp.2017.12.002
|
[6] |
KIM C, STERN R M. Power-Normalized Cepstral Coefficients (PNCC) for Robust Speech Recognition[J]. IEEE/ACM Transactions on Audio,Speech and Language Processing, 2016, 24(7):1315-1329.
doi: 10.1109/TASLP.2016.2545928
|
[7] |
CHEN J T, WANG Y X, WANG D L, et al. A Feature Study for Classification-Based Speech Separation at Low Signal-to-Noise Ratios[J]. IEEE/ACM Transactions on Audio,Speech and Language Processing, 2014, 22(12):1993-2002.
doi: 10.1109/TASLP.2014.2359159
|
[8] |
王雁, 贾海蓉, 吉慧芳, 等. 特征联合优化深度信念网络的语音增强算法[J]. 计算机工程与应用, 2019, 55(9):38-42.
|
|
WANG Yan, JIA Hairong, JI Huifang, et al. Feature Joint Optimization of Deep Belief Network for Speech Enhancement[J]. Computer Engineering and Applications, 2019, 55(9):38-42.
|
[9] |
余琳, 姜囡. 基于Gammatone滤波器的混合特征语音情感识别[J]. 光电技术应用, 2020, 35(3):50-54.
|
|
YU Lin, JIANG Nan. Speech Emotion Recognition with Mixed Features Based on Gammatone Filter[J]. Electro-Optic Technology Application, 2020, 35(3):50-54.
|
[10] |
郭卉, 姜囡, 任杰. 基于MFCC和GFCC混合特征的语音情感识别研究[J]. 光电技术应用, 2019, 34(6):34-39.
|
|
GUO Hui, JIANG Nan, REN Jie. Research on Speech Emotion Recognition Based on Mixed Features of MFCC and GFCC[J]. Electro-Optic Technology Application, 2019, 34(6):34-39.
|
[11] |
李如玮, 孙晓月, 刘亚楠, 等. 基于深度学习的听觉倒谱系数语音增强算法[J]. 华中科技大学学报:自然科学版, 2019, 47(9):78-83.
|
|
LI Ruwei, SUN Xiaoyue, LIU Yanan, et al. Speech Enhancement Based on Auditory Cepstral Coefficient with Deep Learning[J]. Journal of Huazhong University of Science and Technology:Nature Science Edition, 2019, 47(9):78-83.
|
[12] |
贾海蓉, 王卫梅, 吉慧芳. 信噪比信息与时频特征修正相位的语音增强[J]. 西安电子科技大学学报, 2019, 46(5):162-170.
|
|
JIA Hairong, WANG Weimei, JI Huifang. SpeechEnhancement Based on the Modified Phase Using Signal-to-Noise Ratio Information and Time-frequency Characteristics[J]. Journal of Xidian University, 2019, 46(5):162-170.
|
[13] |
ROMERO E, MAZZANTI F, DELGADO J, et al. Weighted Contrastive Divergence[J]. Neural Networks, 2019, 114:147-156.
doi: 10.1016/j.neunet.2018.09.013
|
[14] |
HU Y, LOIZOU P C. Evaluation of Objective Quality Measures for Speech Enhancement[J]. IEEE Transactions on Audio,Speech and Language Processing, 2008, 16(1):229-238.
doi: 10.1109/TASL.2007.911054
|
[15] |
TAAL C H, HENDRIKS R C, HEUSDENS R, et al. An Algorithm for Intelligibility Prediction of Time-Frequency Weighted Noisy Speech[J]. IEEE Transactions on Audio,Speech and Language Processing, 2011, 19(7):2125-2136.
doi: 10.1109/TASL.2011.2114881
|