[1] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer Statistics,2020[J]. CA:A Cancer Journal for Clinicians, 2020, 70(1):7-30.
doi: 10.3322/caac.21590
|
[2] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global Cancer Statistics 2018:GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA:A Cancer Journal for Clinicians, 2018, 68(6):394-424.
doi: 10.3322/caac.21492
|
[3] |
赵晶, 梁隆恺, 何勇军, 等. 复杂背景下的宫颈细胞核分割方法[J]. 哈尔滨理工大学学报, 2019, 24(3):22-28.
|
|
ZHAO Jing, LIANG Longkai, HE Yongjun, et al. The Method of Segmentation of Cervical Nuclei in Complex Background[J]. Journal of Harbin University of Science and Technology, 2019, 24(3):22-28.
|
[4] |
闫欢兰, 陆慧娟, 叶敏超, 等. 结合Sobel算子和Mask R-CNN的肺结节分割[J]. 小型微型计算机系统, 2020, 41(1):161-165.
|
|
YAN Huanlan, LU Huijuan, YE Minchao, et al. Lung Nodule Segmentation Combining Sobel Operator and Mask R-CNN[J]. Journal of Chinese Computer Systems, 2020, 41(1):161-165.
|
[5] |
SHAHUL HAMEED K A, BANUMATHI A, ULAGANATHAN G. P53immunostained Cell Nuclei Segmentation in Tissue Images of Oral Squamous Cell Carcinoma[J]. Signal,Image and Video Processing, 2017, 11:363-370.
doi: 10.1007/s11760-016-0953-y
|
[6] |
GAMARRA M, ZUREK E, ESCALANTE H J, et al. Split and Merge Watershed:A Two-Step Method for Cell Segmentation in Fluorescence Microscopy Images[J]. Biomedical Signal Processing and Control, 2019, 53:101575.
doi: 10.1016/j.bspc.2019.101575
|
[7] |
王娅. 血液红细胞图像自适应标记分水岭分割算法[J]. 中国图象图形学报, 2017, 22(12):1779-1787.
|
|
WANG Ya. Adaptive Marked Watershed Segmentation Algorithm for Red Blood Cell Images[J]. Journal of Image and Graphics, 2017, 22(12):1779-1787.
|
[8] |
冯飞, 刘培学, 李丽, 等. FCM融合改进的GSA算法在医学图像分割中的研究[J]. 计算机科学, 2018, 45(A1):252-254.
|
|
FENG Fei, LIU Peixue, LI Li, et al. Study of FCM Fusing Improved Gravitational Search Algorithm in Medical Image Segmentation[J]. Computer Science, 2018, 45(A1):252-254.
|
[9] |
BAI X, SUN C, SUN C, et al. Cell Segmentation Based on FOPSO Combined with Shape Information Improved Intuitionistic FCM[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1):449-459.
doi: 10.1109/JBHI.2018.2803020
|
[10] |
王莹, 于晓升, 迟剑宁, 等. 双层水平集描述眼底图像视杯视盘分割[J]. 中国图象图形学报, 2020, 25(6):1260-1270.
|
|
WANG Ying, YU Xiaosheng, CHI Jianning, et al. Segmentation of Optic Cup and Disc Based on Two-Layer Level Set Describer in Retinal Fundus Images[J]. Journal of Image and Graphics, 2020, 25(6):1260-1270.
|
[11] |
YU S, LU Y, MOLLOY D. A Dynamic-Shape-Prior Guided Snake Model with Application in Visually Tracking Dense Cell Populations[J]. IEEE Transactions on Image Processing, 2019, 28(3):1513-1527.
doi: 10.1109/TIP.2018.2878331
|
[12] |
陈红, 吴成东, 于晓升, 等. 多描述子活动轮廓模型的医学图像分割[J]. 中国图象图形学报, 2018, 23(3):434-441
|
|
CHEN Hong, WU Chengdong, YU Xiaosheng, et al. Active Contour Model for Medical Image Segmentation Based on Multiple Descriptors[J]. Journal of Image and Graphics, 2018, 23(3):434-441.
|
[13] |
ZHAO M, WANG H, HAN Y, et al. SEENS:Nuclei Segmentation in Pap Smear Images with Selective Edge Enhancement[J]. Future Generation Computer Systems, 2021, 114:185-194.
doi: 10.1016/j.future.2020.07.045
|
[14] |
NAYLOR P, LAE M, REYAL F, et al. Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map[J]. IEEE Transactions on Medical Imaging, 2019, 38(2):448-459.
doi: 10.1109/TMI.2018.2865709
|
[15] |
ZHAO M, WU A, SONG J, et al. Automatic Screening of Cervical Cells Using Block Image Processing[J]. BioMedical Engineering Online, 2016, 15(1):14.
doi: 10.1186/s12938-016-0131-z
|
[16] |
CHAURASIA A, CULURCIELLO E. LinkNet:Exploiting Encoder Representations for Efficient Semantic Segmentation[C]// 2017 IEEE Visual Communications and Image Processing (VCIP).Piscataway:IEEE, 2017:1-4.
|
[17] |
BADRINARAYANAN V, HANDA A, CIPOLLA R. SegNet:A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling (2015)[J/OL].[2015-05-27]. https://arxiv.org/abs/1505.07293.
|
[18] |
PASZKE A, CHAURASIA A, KIM S, et al. ENet:A Deep Neural Network Architecture for Real-Time Semantic Segmentation (2016)[J/OL].[2016-06-07]. https://arxiv.org/abs/1606.02147.
|
[19] |
RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Heidelberg:Springer, 2015:234-241.
|
[20] |
MEHTA S, RASTEGARI M, CASPI A, et al. ESPNet:Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation[C]// European Conference on Computer Vision.Heidelberg:Springer, 2018:561-580.
|
[21] |
MEHTA S, RASTEGARI M, SHAPIRO L, et al. ESPNetv2:A Light-Weight,Power Efficient,and General Purpose Convolutional Neural Network[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2019:9182-9192.
|
[22] |
MEHTA S, MERCAN E, BARTLETT J, et al. Y-Net:Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Heidelberg:Springer, 2018:893-901.
|
[23] |
LI X, ZHONG Z, WU J, et al. Expectation-Maximization Attention Networks for Semantic Segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Piscataway:IEEE, 2019:9166-9175.
|
[24] |
杨晓莉, 蔺素珍. 一种注意力机制的多波段图像特征级融合方法[J]. 西安电子科技大学学报, 2020, 47(1):120-127.
|
|
YANG Xiaoli, LIN Suzhen. Method for Multi-Band Image Feature-Level Fusion Based on the Attention Mechanism[J]. Journal of Xidian University, 2020, 47(1):120-127.
|
[25] |
LIAN S, LUO Z, ZHONG Z, et al. Attention Guided U-Net for Accurate Iris Segmentation[J]. Journal of Visual Communication and Image Representation, 2018, 56:296-304.
doi: 10.1016/j.jvcir.2018.10.001
|
[26] |
WANG W, YE C, ZHANG S, et al. Improving Whole-Heart CT Image Segmentation by Attention Mechanism[J]. IEEE Access, 2019, 8:14579-14587.
doi: 10.1109/ACCESS.2019.2961410
|
[27] |
BUI TD, WANG L, CHEN J, et al. Multi-Task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance[C]// International Workshop on Medical Image Learning with Less Labels and Imperfect Data.Heidelberg:Springer, 2019:243-251.
|
[28] |
AMER A, YE X, ZOLGHARNI M, et al. ResDUnet:Residual Dilated UNet for Left Ventricle Segmentation from Echocardiographic Images[C]// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).Piscataway:IEEE, 2020:2019-2022.
|
[29] |
WOO S, PARK J, LEE J Y, et al. CBAM:Convolutional Block Attention Module[C]// European Conference on Computer Vision.Heidelberg:Springer, 2018:3-19.
|
[30] |
IBTEHAZ N, RAHMAN M S. MultiResU-Net:Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation[J]. Neural Networks, 2020, 121:74-87.
doi: 10.1016/j.neunet.2019.08.025
|
[31] |
TRAN D, RANGANATH R, BLEI D M. The Variational Gaussian Process (2015)[J/OL].[2015-11-20]. https://arxiv.org/abs/1511.06499.
|
[32] |
LI X, CHANG D, TIANT, et al. Large-Margin Regularized Softmax Cross-Entropy Loss[J]. IEEE Access, 2019, 7:19572-19578.
doi: 10.1109/ACCESS.2019.2897692
|
[33] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(8):2011-2023.
doi: 10.1109/TPAMI.2019.2913372
|
[34] |
CAO Y, XU J, LIN S, et al. GCNet:Non-Local Networks MeetSqueeze-Excitation Networks and Beyond[C]// Proceedings of the IEEE International Conference on Computer Vision Workshop.Piscataway:IEEE, 2019:1971-1980.
|
[35] |
LJOSA V, SOKOLNICKI K L, CARPENTER A E. Annotated High-Throughput Microscopy Image Sets for Validation[J]. Nature Methods, 2013, 10(5):445.
|
[36] |
ZHANG S, FU H, YAN Y, et al. Attention Guided Network for Retinal Image Segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Heidelberg:Springer, 2019:797-805.
|
[37] |
DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a:A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data[J]. Journal of Photogrammetry and Remote Sensing, 2019, 162:94-114.
doi: 10.1016/j.isprsjprs.2020.01.013
|