[1] |
刘道华, 崔玉爽, 赵岩松, 等. 一种改进卷积神经网络的教学图像检索方法[J]. 西安电子科技大学学报, 2019, 46(3):52-58.
|
|
LIU Daohua, CUI Yushuang, ZHAO Yansong, et al. Method for Retrieving the Teaching Image Based on the Improved Convolutional Neural Network[J]. Journal of Xidian University, 2019, 46(3):52-58.
|
[2] |
杨军, 王顺, 周鹏. 基于深度体素卷积神经网络的三维模型识别分类[J]. 光学学报, 2019, 39(4):314-324.
|
|
YANG Jun, WANG Shun,Zhou Peng.Recognition and Classification for Three-Dimensional Model Based on Deep Voxel Convolution Neural Network[J]. Acta Optica Sinica, 2019, 39(4):314-324.
|
[3] |
QI C R, HAO S, MO K, et al. PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation[C]// Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017:77-85.
|
[4] |
QI C R, YI L, SU H, et al. PointNet++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:5105-5114.
|
[5] |
葛道辉, 李洪升, 张亮, 等. 轻量级神经网络架构综述[J]. 软件学报, 2020, 31(9):2627-2653.
|
|
GE Daohui, LI Hongsheng, ZHANG Liang, et al. Survey of Lightweight Neural Network[J]. Journal of Software, 2020, 31(9):2627-2653.
|
[6] |
闫林, 刘凯, 段玫妤. 一种用于点云分类的轻量级深度神经网络[J]. 西安电子科技大学学报, 2020, 47(2):46-53.
|
|
YAN Lin, LIU Kai, DUAN Meiyu.Lightweight Deep Neural Network for Point Cloud Classification[J]. Journal of Xidian University, 2020, 47(2):46-53.
|
[7] |
白静, 司庆龙, 秦飞巍. 轻量级实时点云分类网络LightPointNet[J]. 计算机辅助设计与图形学学报, 2019, 31(4):612-621.
|
|
BAI Jing, SI Qinglong, QIN Feiwei. Lightweight Real-Time Point Cloud Classification Network LightPointNet[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(4):612-621.
|
[8] |
LI M, Hu Y, ZHAO N, et al. LPCCNet:A Lightweight Network for Point Cloud Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6):962-966.
doi: 10.1109/LGRS.2018.2889472
|
[9] |
ZHANG M, YOU H X, KADAM P, et al. PointHop:An Explainable Machine Learning Method for Point Cloud Classification[J]. IEEE Transactions on Multimedia, 2020, 22(7):1744-1755.
doi: 10.1109/TMM.2019.2963592
|
[10] |
KUO CC J, ZHANG M, LI S, et al. Interpretable Convolutional Neural Networks via Feedforward Design[J]. Journal of Visual Communication and Image Representation, 2019, 60:346-359.
doi: 10.1016/j.jvcir.2019.03.010
|
[11] |
ZHANG M, WANG Y F, KADAM P, et al. Pointhop++:A Lightweight Learning Model on Point Sets for 3D Classification (2020)[J/OL].[2020-05-23]. https://arxiv.org/abs/2002.03281.
|
[12] |
WANG Y, SUN Y, LIU Z, et al. Dynamic Graph CNN for Learning on Point Clouds[J]. ACM Transactions on Graphics, 2019, 38(5):1-12.
|
[13] |
LIU W, SUN J, LI W, et al. Deep Learning on Point Clouds and Its Application:A Survey[J]. Sensors, 2019, 19(19):4188.
doi: 10.3390/s19194188
|
[14] |
LAN S, YU R, YU G, et al. Modeling Local Geometric Structure of 3D Point Clouds Using Geo-CNN[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2019:998-1008.
|
[15] |
SU H, MAJI S, KALOGERAKIS E, et al. Multi-View Convolutional Neural Networks for 3D Shape Recognition[C]// Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE, 2015:945-953.
|
[16] |
JOHNS E, LEUTENEGGER S, DAVISON A J. Pairwise Decomposition of Image Sequences for Active Multi-View Recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016:3813-3822.
|
[17] |
WU Z, SONG S, KHOSLA A, et al. 3D ShapeNets:A Deep Representation for Volumetric Shapes[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2015:1912-1920.
|
[18] |
BROCK A, LIM T, RITCHIE J M, et al. Generative and Discriminative Voxel Modeling with Convolutional Neural Networks (2016)[J/OL].[2016-08-16]. https://arxiv.org/abs/1608.04236.
|
[19] |
MATURANA D, SCHERER S. Voxnet:A 3D Convolutional Neural Network for Real-Time Object Recognition[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway:IEEE, 2015:922-928.
|
[20] |
ZHI S F, LIU Y X, LI X, et al. Towards Real-Time 3D Object Recognition:A Lightweight Volumetric CNN Framework Using Multitask Learning[J]. Computers & Graphics, 2018, 71:199-207.
doi: 10.1016/j.cag.2017.10.007
|
[21] |
HEGDE V, ZADEH R. FusionNet:3D Object Classification Using Multiple Data Representations (2016)[J/OL].[2018-06-15]. https://arxiv.org/abs/1607.05695.
|
[22] |
ZHANG K, HAO M, WANG J, et al. Linked Dynamic Graph CNN:Learning on Point Cloud via Linking Hierarchical Features (2019)[J/OL].[2019-08-06]. https://arxiv.org/abs/1904.10014.
|
[23] |
BEN-SHABAT Y, LINDENBAUM M, FISCHER A. 3D Point Cloud Classification and Segmentation Using 3D Modified Fisher Vector Representation for Convolutional Neural Networks (2017)[J/OL], [2017-11-12]. https://arxiv.org/abs/1711.08241.
|
[24] |
LIU X, HAN Z, LIU Y S, et al. Point2Sequence: Learning the Shape Representation of 3D Point Clouds with An Attention-Based Sequence to Sequence Network[C]// Proceedings of the AAAI Conference on Artificial Intelligence.Hawaii:AAAI, 2019:8778-8785.
|