[1] |
DONG C, LOY C C, HE K, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281
|
[2] |
SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-Time Single Image and Video Super Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2016:1874-1883.
|
[3] |
KIM J, LEE J K, LEE K M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2016:1646-1654.
|
[4] |
MAO X, SHEN C, YANG Y, et al. Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections[C]// Proceedings of International Conference on Neural Information Processing Systems.Heidelberg:Springer, 2016:2810-2818.
|
[5] |
LI J C, FANG F, MEI K F, et al. Multi-Scale Residual Network for Image Super-Resolution[C]// Proceedings of 2018 ECCV European Conference on Computer Vision.Heidelberg:Springer, 2018:527-542.
|
[6] |
PARK S J, SON H, CHO S H. et al. SRFeat:Single Image Super-Resolution with Feature Discrimination[C]// Proceedings of 2018 ECCV European Conference on Computer Vision.Heidelberg:Springer, 2018:455-471.
|
[7] |
BULAT A, YANG J, GEORGIOS T. To Learn Image Super-Resolution,Use a GAN to Learn How to do Image Degradation First[C]// Proceedings of 2018 ECCV European Conference on Computer Vision.Heidelberg:Springer, 2018:187-202.
|
[8] |
LEDIG C, THEIS L, HUSZARF, et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2017:105-114.
|
[9] |
FRID-ADAR M, DIAMANT I, KLANG E, et al. GAN-Based Synthetic Medical Image Augmentation for Increased CNN Performance in Liver Lesion Classification[J]. Neurocomputing, 2018, 321:321-331.
doi: 10.1016/j.neucom.2018.09.013
|
[10] |
ISOLA P, ZHU J, ZHOU T, et al. Image-To-Image Translation with Conditional Adversarial Networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE, 2017:5967-5976.
|
[11] |
WU Z, SHEN C, DEN HENGELA V. Wider or Deeper:Revisiting the ResNet Model for Visual Recognition[J]. Pattern Recognition, 2019, 90:119-133.
doi: 10.1016/j.patcog.2019.01.006
|
[12] |
ODENA A, DUMOULIN V, OLAH C, et al. Deconvolution and Checkerboard Artifacts(2016)[EB/OL].[2016-10-17]https://distill.pub/2016/deconv-checkerboard/?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound.
|
[13] |
SHI W, CABALLERO J, HUSZáR F, et al. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway:IEEE, 2016:1874-1883.
|
[14] |
WANG Z, JIANG K, YI P, et al. Ultra-Dense GAN for Satellite Imagery Super-Resolution[J]. Neurocomputing, 2020, 398:328-337.
doi: 10.1016/j.neucom.2019.03.106
|
[15] |
张杨忆, 林泓, 管钰华, 等. 改进残差块和对抗损失的GAN图像超分辨率重建[J]. 哈尔滨工业大学学报, 2019, 51(11):128-137.
|
|
ZHANG Yangyi, LIN Hong, GUAN Yuhua, et al. GAN Image Super-Resolution Reconstruction Model with Improved Residual Block and Adversarial Loss[J]. Journal of Harbin Institute of Technology, 2019, 51(11):128-137.
|
[16] |
ZHOU D, DUAN R, ZHAO L, et al. Single Image Super-Resolution Reconstruction Based on Multi-Scale Feature Mapping Adversarial Network[J]. Signal Processing, 2020, 166:107251.
doi: 10.1016/j.sigpro.2019.107251
|
[17] |
KASEM H M, HUNG K W, JIANG J. Spatial Transformer Generative Adversarial Network for Robust Image Super-Resolution[J]. IEEE Access, 2019, 7:182993-183009.
doi: 10.1109/ACCESS.2019.2959940
|
[18] |
MAHAPATRA D, BOZORGTABAR B, GARNAVI R, et al. Image Super-Resolution Using Progressive Generative Adversarial Networks for Medical Image Analysis[J]. Computerized Medical Imaging and Graphics, 2019, 71:30-39.
doi: 10.1016/j.compmedimag.2018.10.005
|
[19] |
ZHANG K, TAO D,GAOX, et al. Coarse-to-Fine Learning for Single-Image Super-Resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5):1109-1122.
doi: 10.1109/TNNLS.2015.2511069
|
[20] |
DONG C, LOY CC, TANG X, et al. Accelerating the Super-Resolution Convolutional Neural Network[C]// European Conference on Computer Vision.Heidelberg:Springer, 2016:391-407.
|
[21] |
YOU C, LI G, ZHANG Y, et al. CT Super-Resolution GAN Constrained by the Identical,Residual,and Cycle Learning Ensemble (GAN-CIRCLE)[J]. IEEE Transactions on Medical Imaging, 2020, 39(1):188-203.
doi: 10.1109/TMI.2019.2922960
|