西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (2): 228-236.doi: 10.19665/j.issn1001-2400.2022.02.026

• 计算机科学与技术 & 网络空间安全 • 上一篇    

一种多尺度GAN的低剂量CT超分辨率重建方法

须颖1,2(),刘帅1(),邵萌1(),岳国栋1(),安冬1()   

  1. 1.沈阳建筑大学 机械工程学院,辽宁 沈阳 110168
    2.广东工业大学 机电工程学院,广东 广州 510006
  • 收稿日期:2020-08-03 出版日期:2022-04-20 发布日期:2022-05-31
  • 通讯作者: 安冬
  • 作者简介:须 颖(1959—),男,教授,博士,E-mail: xuying@sjzu.edu.cn;|刘 帅(1995—),女,沈阳建筑大学硕士研究生,E-mail: 1826380327@stu.sjzu.edu.cn;|邵 萌(1981—),女,副教授,硕士,E-mail: mshao@sjzu.edu.cn;|岳国栋(1983—),男,副教授,博士,E-mail: ygd@sjzu.edu.cn
  • 基金资助:
    国家自然科学基金(51975130);辽宁省重点研发计划(2017225016);辽宁省自然科学基金(20180550002);并联构型精密运动定位平台(2017/09/01-2020/08/31)

Multi-scale generation antagonistic network for the low-dose CT images super-resolution reconstruction algorithm

XU Ying1,2(),LIU Shuai1(),SHAO Meng1(),YUE Guodong1(),AN Dong1()   

  1. 1. College of Mechanical Engineering,Shenyang Jianzhu University,Shenyang 110168,China
    2. School of Mechanical and Electrical Engineering,Guangdong University of Technology,Guangzhou 510006,China
  • Received:2020-08-03 Online:2022-04-20 Published:2022-05-31
  • Contact: Dong AN

摘要:

低剂量CT可以降低X射线辐射、减少对人体的伤害,但成像质量也会显著下降。为得到具有精细结构细节的高质量成像,提出一种基于多尺度残差生成网络的低剂量CT图像超分辨率重建算法,在保持病理不变情况下,从低分辨率图像中恢复高分辨率图像。首先,多尺度网络可以充分利用不同大小图像特征,丰富图像细节信息,提高重建过程中对特征的利用率;其次,引入残差网络,在实现特征重复利用的同时能够很好地防止过拟合现象;最后,将对抗损失和内容损失相结合,约束特征生成的同时能够获得感知质量更好的重建图像。结果表明,该方法在结构相似性、特征相似性、峰值信噪比指标上分别约提高0.047、0.022 8和1.962,算法的IS、FID、SWD性能也比其他两种基于生成对抗网络算法要好,并且在边缘轮廓细节面有更好的表现。为了验证内容损失的有效性,将MSRGAN和其3种变化模型进行比较:MSRGAN相对其变化模型在结构相似性指标平均高出4%,特征相似性指标平均高出3.1%,峰值信噪比指标平均高出17.4%,说明了这种损失函数能够提高超分辨率图像的感知质量,充分证明所提算法的有效性。

关键词: 图像处理, 超分辨率, 生成对抗网络, 多尺度特征, 低剂量CT

Abstract:

Low-dose CT can reduce X-ray radiation and damage to human body,but the imaging quality can also be significantly reduced.In order to obtain high quality images with fine structural details,a low dose CT image super-resolution reconstruction algorithm based on the multi-scale residual generation network (MSRGAN) is proposed to recover high resolution (HR) images from low resolution (LR) images with pathology unchanged.First,a residual network is introduced to prevent overfitting while realizing feature reuse.Second,the multi-scale network can make full use of image features of different sizes,enrich image details and improve the utilization rate of features in the reconstruction process.Finally,by combining the adversarial loss and content loss,the reconstructed image with a better perceived quality can be obtained when the generated feature is constrained.Experimental results show that compared with other algorithms,this method improves in SSIM,FSIM and PSNR indexes,that its GAN's IS,FID and SWD performance is better than that of the other two Gan-based algorithms,and that it has a better performance in edge contour detail,which fully proves the effectiveness of this algorithm.

Key words: image processing, super-resolution, generate antagonistic network, multi-scale features, low-dose CT

中图分类号: 

  • TP391