西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (3): 74-82.doi: 10.19665/j.issn1001-2400.2022.03.009

• 信息与通信工程 • 上一篇    下一篇

降噪自编码器辅助的下行MIMO-SCMA编解码方法

蒋芳1,2(),黄兴1(),胡梦钰1(),王翊1,2(),许耀华1,2(),胡艳军1,2()   

  1. 1.安徽大学 计算智能与信号处理教育部重点实验室,安徽 合肥 230601
    2.安徽省物联网频谱感知与测试工程技术研究中心,安徽 合肥 230601
  • 收稿日期:2021-01-26 修回日期:2021-12-08 出版日期:2022-06-20 发布日期:2022-07-04
  • 作者简介:蒋芳(1981—),女,讲师,博士,E-mail: jiangfang@ahu.edu.cn|黄兴(1998—),男,安徽大学硕士研究生,E-mail: 18815688326@163.com|胡梦钰(1996—),女,安徽大学硕士研究生,E-mail: 2331518158@qq.com|王翊(1983—),男,讲师,博士,E-mail: yiwang@ahu.edu.cn|许耀华(1976—),男,副教授,E-mail: xyh@ahu.edu.cn|胡艳军(1967—),女,教授,博士,E-mail: yanjunhu@ahu.edu.cn
  • 基金资助:
    国家自然科学基金(62071002);安徽大学博士科研启动基金

Denoising autoencoder-aided downlink MIMO-SCMA codec method

JIANG Fang1,2(),HUANG Xing1(),HU Mengyu1(),WANG Yi1,2(),XU Yaohua1,2(),HU Yanjun1,2()   

  1. 1. Key Laboratory of Intelligent Computing & Signal Processing,Ministry of Education,Anhui University,Hefei 230601,China
    2. Anhui Internet of Things Spectrum Sensing and Testing Engineering Technology Research Center,Hefei 230601,China
  • Received:2021-01-26 Revised:2021-12-08 Online:2022-06-20 Published:2022-07-04

摘要:

为了改善稀疏码分多址系统在多天线应用中的误码率性能,将深度学习引入多输入多输出稀疏码分多址系统,提出了一种降噪自编码器辅助的编解码方法。发射端使用多个深度神经网络单元构建多天线稀疏码分多址编码器,通过神经网络的学习获得每个用户在不同发射天线上的码本,采用降噪自编码器的结构在输入端引入噪声层,使得编码器的输出为更具鲁棒性的特征表示;接收端设计了一个全链接的深度神经网络作为解码器,该解码器将多天线检测与多用户检测联合进行,一次解码即可获得用户数据;采用端到端的训练方式对编解码器进行训练,优化神经网络的结构与参数,使得神经网络能够快速收敛。实验结果表明,提出的编解码方法可以降低多输入多输出稀疏码分多址系统的误码率,同时减少接收端检测的时间。

关键词: 多输入多输出, 稀疏码分多址, 降噪自编码器, 深度神经网络

Abstract:

Aiming to improve the bit error rate (BER) performance of sparse code multiple access (SCMA)systems in multi-antenna applications,deep learning is introduced in a MIMO-SCMA system and a denoising autoencoder-aided Codec method (DAE-MIMO-SCMA) is proposed.Multiple deep neural network (DNN) units are used by the transmitter to construct the MIMO-SCMA encoder.The codebook of each user on different transmitting antennas is obtained through neural network (NN) learning.Moreover,the noise layer is used at the transmitter so that the output of the encoder is more robust.At the receiver is designed a fully connected DNN as a decoder,which combines multi-antenna detection and multi-user detection to obtains the original data of all users at one time.An end-to-end training method is used to train the Codec,optimizing the structure and parameters of the NN,which improves the convergent rate.Experimental results show that the proposed Codec method can lower the BER of the MIMO-SCMA system and reduce the detection time at the receiver.

Key words: multiple input multiple output, sparse code multiple access, denoising autoencoder, deep neural network

中图分类号: 

  • TN914.5