西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (3): 93-100.doi: 10.19665/j.issn1001-2400.2022.03.011

• 信息与通信工程 • 上一篇    下一篇

一种动态校正的信号双尺度近邻定位方法

孙顺远1(),朱红洲1(),秦宁宁1,2()   

  1. 1.江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
    2.南京航空航天大学 电磁频谱空间认知动态系统工信部重点实验室,江苏 南京 211106
  • 收稿日期:2021-02-03 修回日期:2022-03-18 出版日期:2022-06-20 发布日期:2022-07-04
  • 作者简介:孙顺远(1984—),男,副教授,博士,E-mail: hzrobin@jiangnan.edu.cn|朱红洲(1996—),男,硕士,E-mail: 6181913053@stu.jiangnan.edu.cn|秦宁宁(1980—),女,教授,博士, E-mail: ningning801108@163.com
  • 基金资助:
    国家自然科学基金(61702228);国家自然科学基金(61803183);江苏省自然科学基金(BK20170198);江苏省自然科学基金(BK20180591);电磁频谱空间认知动态系统工信部重点实验室开放研究基金(KF20202104)

Signal two-scale nearest neighbor positioning method under dynamic correction

SUN Shunyuan1(),ZHU Hongzhou1(),QIN Ningning1,2()   

  1. 1. Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education,Jiangnan University,Wuxi 214122,China
    2. Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space,Ministry of Industry and Information Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
  • Received:2021-02-03 Revised:2022-03-18 Online:2022-06-20 Published:2022-07-04

摘要:

在大型室内定位场景中,利用接收信号强度的指纹定位算法存在信号传播不稳定、计算复杂度高以及定位精度低等问题。为解决该问题,提出一种动态校正的信号双尺度近邻定位算法。根据目标区域的物理连通性,采用一对多支持向量机构建分区模型,缩小信号变化范围,减小在线阶段的数据计算量。以高斯过程回归训练接入点信号距离模型预测分区路径损耗特性,校正信号波动值,使定位结果更加稳定。在线阶段,引入斯皮尔曼相似系数来衡量信号间的相似度,减小指纹库中异常值带来的影响,基于动态邻近算法计算信号间的差异值,然后使用Blending模型融合算法将这两种尺度进行线性融合,建立具备动态高斯校正能力的双尺度近邻定位算法,并设计环境参数自适应获取近邻k值,减小环境噪声的影响,克服了单一的信号尺度易导致定位结果波动较大的问题。测试结果表明,所提算法在房间和走廊区域定位精度均小于0.517 3 m,相较于传统算法,定位精度提升约25%以上。

关键词: 室内定位, 指纹定位, 分区, 高斯过程回归, 信号双尺度

Abstract:

Among indoor position scenarios,the positioning method based on the Received Signal Strength has several problems such as unstable signal propagation,high computational complexity and low positioning accuracy caused by large target areas.In order to solve these problems,this paper proposes a signal two-scale nearest neighbor with dynamic correction method,according to the connectivity structure of the target area,and the system uses the one-vs-rest support vector machine to construct a partition model of the target area in order to predict the subarea with signal changes.This paper trains the AP signal-distance model based on Gaussian process regression in partition.It is important to realize the correction of signal fluctuation value by predicting the path-loss characteristics in partition.In order to improve the positioning accuracy,by combining signal similarity with signal difference,a two-scale nearest neighbor algorithm is established.The k value of the nearest neighbor is adaptively calculated by combining the environmental parameter in order to reduce the influence of environmental noise.Through simulation experiments,the average localization error of the proposed algorithm is less than 0.5173 m,indicating that the algorithm causes a lower error than the traditional algorithm by more than 25 percent.

Key words: indoor positioning, fingerprint positioning, subarea, Gaussian process regression, signal two-scale

中图分类号: 

  • TN96