西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (3): 120-128.doi: 10.19665/j.issn1001-2400.2022.03.014

• 信息与通信工程 • 上一篇    下一篇

一种改进粒子滤波算法实现的多径参数估计

国强(),刘雪萌(),周凯()   

  1. 哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
  • 收稿日期:2020-12-29 修回日期:2021-11-25 出版日期:2022-06-20 发布日期:2022-07-04
  • 作者简介:国强(1972—),男,教授,E-mail: guoqiang@hrbeu.edu.cn|刘雪萌(1996—),女,哈尔滨工程大学硕士研究生,E-mail: liuxuemeng0501@163.com|周凯(1971—),男,副教授,E-mail: zhoukai@hrbeu.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFE0206500);国家自然科学基金(62071140)

Multipath parameter estimation realized by an improved particle filter algorithm

GUO Qiang(),LIU Xuemeng(),ZHOU Kai()   

  1. School of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:2020-12-29 Revised:2021-11-25 Online:2022-06-20 Published:2022-07-04

摘要:

在静态环境下针对粒子滤波算法在参数估计过程中存在的粒子退化、粒子多样性降低的问题,提出一种无迹卡尔曼滤波算法与改进差分进化算法联合优化粒子滤波的新算法。该算法首先在粒子滤波重要性采样阶段引入无迹卡尔曼滤波为每个粒子计算其均值和协方差,并利用该均值和协方差“指导”采样,得到合理的采样分布以避免粒子退化现象。其次,传统的差分进化算法虽结构简单、容易使用,但其差分变异算子一般为固定常数,自适应性较差,因此在差分进化的变异与交叉过程中采用一种自适应策略,避免其出现过早收敛、造成局部最优的现象。同时,采用改进后的差分进化算法代替粒子滤波的重采样过程,克服了粒子多样性降低的问题。最后,利用新算法实现多径参数估计,并将估计的多径信号从导航信号中减去,得到直达信号,以达到提高定位精度的目的。仿真结果表明,新算法在满足实时性要求的情况下,可大大提高粒子多样性进而降低参数估计结果的波动幅度并减小其均方根误差。

关键词: 参数估计, 粒子滤波, 粒子退化, 改进差分进化

Abstract:

In a static environment,to solve the problems of particle degradation and reduced particle diversity in the parameter estimation process of the particle filter algorithm,a new algorithm combining the unscented Kalman filter algorithm and improved differential evolution algorithm is proposed to optimize the particle filter.The algorithm first introduces the unscented Kalman filter in the importance sampling stage of the particle filter to calculate the mean and covariance of each particle,and uses the mean and covariance to "guide" sampling to avoid particle degradation.Second,an adaptive strategy is adopted in the mutation and crossover process of traditional differential evolution to avoid premature convergence.At the same time,the improved differential evolution algorithm is used to replace the particle filter's resampling process,which overcomes the problem of reduced particle diversity.Finally,the new algorithm is used to realize multipath parameter estimation.Simulation results show that the new algorithm can effectively reduce the fluctuation range of the parameter estimation results and reduce the root mean square error while meeting the real-time requirements.

Key words: parameter estimation, particle filter, particle degradation, improved differential evolution

中图分类号: 

  • TN967.1