西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (3): 171-182.doi: 10.19665/j.issn1001-2400.2022.03.019

• 计算机科学与技术&人工智能 • 上一篇    下一篇

新型深度矩阵分解及其在推荐系统中的应用

史加荣(),李金红()   

  1. 西安建筑科技大学 理学院,陕西 西安 710055
  • 收稿日期:2021-03-08 修回日期:2021-12-01 出版日期:2022-06-20 发布日期:2022-07-04
  • 作者简介:史加荣(1979—),男,教授,博士,E-mail: shijiarong@xauat.edu.cn|李金红(1997—),女,西安建筑科技大学硕士研究生,E-mail: 1469888512@qq.com
  • 基金资助:
    陕西省自然科学基金(2021JM-378)

Novel deep matrix factorization and its application in the recommendation system

SHI Jiarong(),LI Jinhong()   

  1. School of Science,Xi’an University of Architecture and Technology,Xi’an 710055,China
  • Received:2021-03-08 Revised:2021-12-01 Online:2022-06-20 Published:2022-07-04

摘要:

个性化推荐在网络消费平台上发挥着越来越重要的角色。低秩和深度矩阵分解已广泛应用于推荐系统,并使推荐性能得以优化。为了克服传统矩阵分解的双线性性,深度矩阵分解基于用户和项目的特征向量,建立深度神经网络模型。现有方法在数据规模较大且稀疏性较高时,表现出性能不佳及运行时间较长。为此,提出了一种新型深度矩阵分解模型。该模型的输入为用户和项目的隐特征向量,网络结构由两个并行的多层感知机和一个用于预测的加权内积算子组成。对于所建立的模型,设计了两阶段求解方法。先利用低秩矩阵拟合算法对缺失数据进行补全,从而确定了两个隐特征矩阵。再将所构建的特征工程作为深度神经网络的输入,建立输出为预测评分的非线性映射。在公开的推荐数据集上验证了所提模型的有效性。实验结果表明:与传统矩阵分解方法相比,所提方法极大地提高了推荐性能;与现有的深度矩阵分解方法相比,运行时间得到显著降低。

关键词: 推荐系统, 低秩矩阵拟合, 深度矩阵分解, 深度神经网络, 深度学习

Abstract:

Personalized recommender systems are playing an increasingly important role in the online consumption platform.Low-rank and deep matrix factorization have been widely used in recommendation systems to optimize the recommendation performance.In order to overcome the bilinear property of traditional matrix factorizations,deep matrix factorizations establish the deep neural network models based on the feature vectors of users and items.The existing methods show a poor performance and a long running time when the data scale is large and the sparsity is high.For this purpose,a new deep matrix factorization model is proposed whose input is the latent feature vectors of users and items.The network structure is composed of two parallel multi-layer perceptrons and a weighted inner product operator for prediction.For the proposed model,a two-stage solution method is designed.First,the low-rank matrix fitting algorithm is used to complete the missing data so that two latent feature matrices are determined simultaneously.Then,the generated feature engineering is fed into the deep neural network and a nonlinear mapping is established with the output as the prediction score.The effectiveness of the proposed method is verified in public recommendation data sets.Experimental results show that the proposed method greatly improves the recommendation performance compared with the traditional matrix factorization methods and that compared with the existing deep matrix factorization methods,the running time is significantly reduced.

Key words: recommendation systems, low-rank matrix fitting, deep matrix factorization, deep neural network, deep learning

中图分类号: 

  • TP18